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ABSTRACT
Defending against large, distributed Denial-of-Service at-
tacks is challenging, with large changes to the network core
or to end-hosts often suggested. To make matters worse,
spoofing adds to the difficulty, since defenses must resist
attempts to trigger filtering of other people’s traffic. Fur-
ther, any solution has to provide incentives for deployment,
or it will never see the light of day. We present a simple
and effective architectural defense against distributed DoS
attacks that requires no changes to the end-hosts, minimal
changes to the network core, is robust to spoofing, provides
incentives for initial deployment, and can be built with off-
the-shelf hardware.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: [Network
Architecture and Design]

General Terms
Design, Security

Keywords
Denial-of-service, Internet Architecture

1. INTRODUCTION
Despite serious under-reporting, the number and size of

DoS attacks are growing at an alarming rate. ISPs are un-
der constant pressure to upgrade access speeds, often leav-
ing little time to implement security measures: it is precisely
these high-speed yet largely unmonitored links that provide
a powerful base from which to launch attacks. This, com-
bined with the continuous stream of exploits, ensures that
attacks will keep growing both in number and size. In its
biannual report[32], Symantec reported as many as 1,400
DoS attacks per day, an increase of 51% since the previous
report. Botnet size is also increasing: reports from 2005 in-
dicate that Dutch bot-herders may have controlled as many
as 1.5 million hosts[10]. And whereas early DoS attacks were
perpetrated by script kiddies, recent years have seen a shift
towards organized crime and extortion[26].

As DDoS attacks grow, it becomes increasingly clear that
fighting them at or near the victim is largely ineffective,
since the traffic can aggregate sufficiently to saturate even
well-provisioned links. Designing defenses against these at-
tacks is intrinsically difficult. While the core of the net-
work would seem like the perfect location to place defense

mechanisms, ISPs there have few if any direct incentives to
deploy new measures. Further, change in the core is likely
to require hardware change to core routers. Even if sim-
ply reconfiguring routers is all that is needed, operators are
generally reluctant to make modifications without clear in-
centives. Defenses implemented at the client hosts are just
as problematic. Unless such defenses were hardware-based,
it is likely they could be broken or exploited by an attacker.
Source address spoofing complicates matters further. Any
DoS defense mechanism that does not take this into account
can be subverted by an attacker into denying service to an
unsuspecting victim, turning the mechanism into a DoS tool
in its own right. Finally, any practical solution needs to
provide clear incentives for initial deployment or it will fail
regardless of technical merit.

In this paper we present a new and rather simple architec-
tural defense against distributed Denial-of-Service attacks.
It requires minimal changes to the core network, no changes
to the end clients, it is robust to spoofing, it provides initial
deployment incentives for all parties involved and can be
implemented using currently-deployed or off-the-shelf hard-
ware.

2. PROPOSED SOLUTION
Our aim is to tackle one of the main enablers of DoS

attacks in the current Internet: hosts are allowed to send
traffic regardless of whether the receiver wants it or not.
The solution allows hosts under attack to request that the
network stop traffic from specified sources before it can ag-
gregate significantly. Three basic mechanisms are required:
marking, so that the network can know where malicious
packets are coming from; filtering, so that undesired packets
are dropped; and routing, so that traffic traveling towards a
destination is forced to traverse this filtering.

In previous work [15], we described an architecture us-
ing similar mechanisms. The approach consisted of divert-
ing traffic going to protected servers so it traversed control
points. These control points would IP-in-IP encapsulate the
traffic, sending it to a decapsulator near the server. The
server could then tell which control point a malicious flow
had traversed, and request it be shut down at this boundary.
However, there were some shortcomings. The distribution
of routes relied on BGP, putting a burden on global routing,
and generally requiring disaggregation of these routes. The
marking and filtering of packets happened fairly close to the
destination, so that each control point had to be able to
handle potentially large amounts of traffic. Initial deploy-
ment was also only effective for larger ISPs with many edge
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Figure 1: Encapsulation architecture.

routers, so that the incoming attack could be diffused across
several of these control points.

These shortcomings, while not insurmountable, can be
avoided with a different encapsulation strategy, described
in this paper. Our new architecture implements the three
mechanisms mentioned earlier, but does so in a very differ-
ent way. The most important change has to do with the
location of the control points that mark and filter packets:
whereas previously they were placed at the edges of the ISP
hosting the server being defended, these are now deployed
as close to the clients of the server as possible.

This change has significant benefits. First, it means that
these control points never have to handle large traffic ag-
gregates and so can be built and deployed inexpensively.
Second, their placement at the edges of the network makes
it difficult for an attacker to indirectly DoS a server by at-
tacking the encapsulator. Finally, no filtering or marking
is required from the middle of the network, simplifying the
deployment story.

The architecture presented in this paper also improves
over the previous one by distributing path-agnostic routes
using a separate and extremely robust peer-to-peer protocol,
relieving any burden from BGP and removing any disaggre-
gation issues. Finally, it has a simpler initial deployment
story, and provides better incentives for it.

But with these advantages come one major problem: it is
now possible for some attackers at legacy ISPs to spoof the
encapsulation. A key contribution of this paper is to show
that this is not a showstopper; some additional mechanism
is required to be robust, but the complexity is not excessive.
The following sections explain the full solution and these
issues in greater detail.

2.1 Marking and Filtering
As source IP addresses can be spoofed, if we want to shut

down malicious traffic close to its source, a marking mecha-
nism is needed so packets can be traced back to their origin.
While many solutions have been proposed for this, a simple
mechanism already exists that is just right for the job: IP-
in-IP tunneling. The idea is simple: encapsulate all packets
near their sources and decapsulate them near their destina-
tions, using the encapsulation header to record the origin
network. Two additional boxes are needed for this: an “en-
capsulator” near the source and a “decapsulator” near the
destination; these boxes will also collaborate to filter un-
wanted traffic. We believe they can be implemented using
off-the-shelf hardware.

During normal operation (see Figure 1), a packet from a
client will reach a local encapsulator on the path to the In-
ternet. The encapsulator looks up the IP address of the de-
capsulator, IP-in-IP encapsulates it, and sends the packet to
the decapsulator. The source address in the encapsulation
header serves to tell the decapsulator which encapsulator

forwarded the packet. At the decapsulator, the outer en-
capsulation header is removed, and the packet is forwarded
on to the server.

When a protected server comes under attack, it sends a
request to its local decapsulator to filter traffic it deems un-
wanted1. On receipt of a filtering request for a particular
source, the decapsulator waits for the next packet from that
source and notes down which encapsulator it came through.
While this requires the decapsulator to keep state and mon-
itor the traffic going through it, this state is only temporary
and lasts only until the filtering request is sent.

Once the decapsulator figures out which encapsulator to
talk to, it sends out the actual filtering request. Finally,
the encapsulator installs the filter, blocking the unwanted
traffic. In this way, the server under attack can ask the
network to stop sending it undesired traffic, an impossibility
in the current Internet.

Of course the full story is not quite as simple as sketched
out above, and we will now look at what would be required
for this general idea to be viable.

2.2 Routing
To perform edge-to-edge encapsulation, the encapsulator

needs to know how to map the destination IP address from
a data packet to the address of the relevant decapsulator.
Essentially this is a routing problem, and this information
could in principle be conveyed by BGP. However, using BGP
would be far from ideal, as the routers in the core of the In-
ternet do not need to know this information. Indeed, the
encapsulator does not care about the precise path, but only
which decapsulator to tunnel the packet to. Thus, we would
be burdening BGP with a great deal of additional informa-
tion for no good reason. The mapping from network prefix
to decapsulator address or addresses is relatively static, so
we suggest that a separate dissemination channel be used to
distribute these mappings.

As this information is not path-specific, any simple flood-
ing algorithm can be used for this distribution, so long as
the data itself is secured. Since no policy is involved, decap-
sulation routes can be flooded to all of an ISP’s neighbors,
making this distribution much more robust than conven-
tional inter-domain routing. We will discuss possible routing
designs in Section 4.4.

How large would the decapsulator routing table held at
each encapsulator be? This clearly depends on how widely
decapsulators are deployed, but in the extreme case where
every routed network is associated with one or more decap-
sulators, this table is likely to be at least as large as the back-
bone BGP routing tables, currently in the region of 200,000
routes. The size of these decapsulator tables would increase
further if decapsulation is performed close to the destina-

1Detection mechanisms are beyond the scope of this paper,
but commercial detection boxes may be suitable for this role.
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Figure 2: Partial deployment scenarios.

tion subnets for routes which are advertised via BGP to the
public Internet as aggregate routes. We might imagine a
near-worst-case scenario where every /24 subnet were ad-
vertised with a different decapsulator. At the present time,
with the IPv4 unicast address space roughly half-filled, this
would require about eight million prefixes. This seems like
a lot, but the problem is rather different from that faced by
backbone routers running BGP. A BGP router must main-
tain full routing information from many BGP peers, must
calculate the best route as paths change, and must perform
longest prefix match on the resulting forwarding table of
best routes. The decapsulator tables are different, as there
is only one routing table used by all encapsulators world-
wide, and it does not change as paths through the Internet
change. If these routes were maintained as a flat hash-table,
rather than requiring longest prefix match, there should be
no problem doing look-ups on this table at high speed. As
the mappings are relatively static, distributing and main-
taining this data should not cause a problem either.

Making an encapsulator check eight million digital signa-
tures on startup might be problematic. In reality though,
the number of signatures required is not related to the num-
ber of decapsulators, but rather to the number of origin Au-
tonomous Systems in the BGP routing tables. Each AS can
sign as a group all the prefix-to-decapsulator bindings for
routes that it advertised, reducing the number of signatures
to around 20,000 or so in the current Internet. In addi-
tion, there is no need for the edge encapsulators to directly
check the signatures themselves. Instead a hierarchy within
an ISP can be established, whereby one or more servers re-
ceive the routes from neighboring ISPs, check the signatures
and only then pass them on to the encapsulators. Thus we
believe that signed mappings from destination address pre-
fixes to decapsulator addresses are technically viable and
economically feasible, even in the extreme case of a different
decapsulator for every /24 subnet in the Internet.

2.3 Legacy ISPs
If the mechanism deployed above were ubiquitous, then

source-address spoofing by end-systems would be ineffective,
and all unwanted flooding attacks could be stopped close to
their sources. However, such a scheme must also work with

partial deployment, which leaves open the possibility of DoS
attacks by end-systems at legacy ISPs that do not deploy
encapsulators.

To protect against attacks from such hosts, an ISP pro-
tecting a server can involve the border routers at its ingress
points. One possible solution would be to deploy a diffserv
classifier that prioritizes IP-in-IP traffic destined for the lo-
cal decapsulators, reducing the effectiveness of bandwidth
flooding attacks that attempt to saturate links. Attacks us-
ing unencapsulated traffic will then have minimal effect on
traffic from networks deploying encapsulators.

Of course the astute attacker will then simply perform en-
capsulation directly from his attacking end-systems, so that
his traffic is prioritized too. By spoofing the encapsulation
header, such an attacker at a legacy ISP can make his traf-
fic appear to be coming from many encapsulators. One way
to avoid spoofed encapsulation would be to restrict the dis-
tribution of routes for the decapsulator addresses, so that
the decapsulators are simply unreachable from legacy ISPs.
If all the ISPs deploying encapsulators formed a connected
graph under normal BGP routing, then this would effec-
tively prevent such attacks from succeeding. However, it is
unlikely that such a graph would be connected, at least early
in the deployment process, so this solution is not ideal.

Another option would be for all ISPs deploying our scheme
to also run an encapsulator for all traffic arriving from legacy
neighbors; this is close to the solution described in [15].
However, performing such encapsulation and filtering on
high-speed peering links would be more costly than per-
forming it at edge-links since it could no longer be done
with off-the-shelf PCs; this would present an unnecessary
deployment hurdle.

Instead, our preferred solution is to use a single bit in
the packets to indicate that traffic destined to a protected
server has traversed a legacy ISP. Such a bit is inspired by
Bellovin’s “evil bit” [5]. ISPs deploying our scheme install
a simple filter at border routers connecting to legacy ISPs,
setting the evil bit in packets arriving from these neighbors.
If along the path a packet traverses any ISP that does not
perform encapsulation, then it is classed as potentially evil.
ISPs hosting servers can then prioritize traffic that has come
via a path where all the ISPs perform encapsulation.



Figure 2 illustrates this mechanism. ISPs A and G are
legacy ISP while the other ISPs have deployed encapsula-
tion. Routers C1, C2, D1, D2, and E1 are conventional
border routers configured with simple packet classifiers.

A spoofed encapsulated packet from host H1 destined for
the server will traverse ISP A unchanged. Through con-
tractual agreements ISP C will know whether ISP A is a
legacy ISP or not; since it is, when the packet reaches ISP
C, Router C1 will set the packet’s “evil bit”, since it knows
that the packet came from a legacy neighbor. Router E1
later uses the evil bit to put the packet in a lower priority
diffserv class.

A similar packet from host H2 would reach E1 with its
evil bit cleared, since ISPs B, C and D have all deployed
encapsulation; as a result, it is classified as higher priority.
However, should the server deem packets from this source
to be malicious, it can request that the encapsulator drop
them. Even if the host is spoofing, this mechanism will be
able to filter the traffic as far as the encapsulator, at which
point the problem becomes a local one.

Finally, an encapsulated packet from host H3 would have
its evil bit set by ISP D, since although ISP F has deployed
encapsulation, provider G has not. Thus all packets arriving
at router D2 get the evil bit set, and so receive lower priority
at E1. While this may at first seem harsh, it provides the
right incentive: customer ISP F will put pressure on ISP G
to deploy the scheme (or even switch providers) so that their
clients will not be placed in a lower priority queue.

3. PREVENTING ABUSE OF DEFENSES
Providing a mechanism whereby the recipient of traffic

can request that traffic cease is an effective way to defend
against all but the most subtle flooding attacks. However,
care must be taken to avoid an attacker using our mechanism
to deny service to legitimate traffic. We divide the spectrum
of possible attacks into two independent vectors:

• Direct attacks that send filtering requests.

• Indirect attacks that generate spoofed traffic with the
aim of triggering the defense mechanism to take inap-
propriate action.

For both cases it is possible to exhaustively enumerate
the options open to an attacker, based on what a bot can
spoof under differing circumstances and on where the bot
is located relative to the systems under attack. These are
shown in figures 3 and 4.

For direct attacks the attacker’s options are fairly limited,
and we only need to consider spoofed decapsulators in var-
ious locations. For indirect attacks there are more cases to
consider:

• A bot at a legacy ISP may be able to spoof the encap-
sulator header, or the client address (so long as a full
TCP connection is not needed for the attack) or both.

• A bot at an encapsulating ISP may still be able to
spoof the client address if ingress filtering is not per-
formed.

• A bot may be located at the same ISP as the legitimate
client he wishes to deny service to, or at a different ISP.

For indirect attacks, spoofing the decapsulator provides no
advantage, so we do not consider this case.

Spoofed C Spoofed E A same E as C Comments
× × × No spoofing
× ×

√
No spoofing

×
√

× See figure 5:1
×

√ √
Impossible√

× × See figure 5:2√
×

√
See figure 5:3√ √

× See figure 5:4√ √ √
Impossible

Figure 3: Table of indirect attacks. The letter A

stands for the attacker, C the client, E the encapsu-

lator and D the decapsulator.

Spoofed Request A on E ↔ D Path Comments
× × No attack
×

√
A can drop request√

× See figure 5:5√ √
A can drop request

Figure 4: Table of direct attacks.

We will now examine each of the indirect attack scenarios
in Figure 3. The first two entries do not constitute an attack
and are there merely for completeness.

The third entry (figure 5.1) consists of an attacker C lo-
cated at a legacy ISP who spoofs encapsulator E, but uses
his own address C as the client address. The reason for
doing this might be that he needs a full TCP connection
to trigger a response from the server’s defenses. As a re-
sult of the spoofing, if the server determines the traffic of
C to be malicious, the decapsulator D will ask E to install
a filter. This attack is rather harmless unless the attacker
possesses a very large number of bots. In such cases it could
represent a stateholding attack on E. However, so long as
E knows which subnets are legitimate client addresses, this
attack will not succeed, as E can simply decline to install
the filters.

The fourth entry in the table represents an impossible
situation, since the attacker would not be able to spoof an
encapsulator from a non-legacy ISP.

In the fifth entry (figure 5.2) attacker C’ sits behind le-
gitimate encapsulator E2 and spoofs traffic from client C,
which sits behind encapsulator E1. When D receives a re-
quest to block traffic “from C to S”, it will wait for the next
packet from C to S to arrive and note which encapsulator
it came from. However, it is possible that this packet will
come from the legitimate C through E1, while the packets
that caused the detection mechanism to request the filter
may have come through E2; if we asked E1 to install the
filter, the attacker would succeed in denying service to C. In
essence, D does not know whether to send the filtering re-
quest to E1 or E2. The simplest solution would be for E2 to
block this spoofed traffic, as C is not a customer address for
E2’s ISP. However, this is not always possible, so we would
like our solution to work even in the absence of ingress fil-
tering. If every ISP deploying an encapsulator also deploys
a decapsulator (a likely scenario) then, using the signed de-
capsulator routing tables, D would contact C’s decapsulator
requesting a list of C’s encapsulators. As E2 is not on this
list, D can safely request that E2 block all traffic from C.
The same effect could also be achieved by disseminating the
encapsulator list in the decapsulation routing table.



C E D

D’

S

D’ spoofs 
address of D

E D S

E’C

Stop(C−>S)

Stop(C−>S)

C spoofs E to cause D to 
request real E to set up filters

Flood

Scenario 5.1

D S

Flood

Scenario 5.2

C

C’

Normal traffic

C’ spoofs
address of C

E D S
Flood

C

C’
C’ spoofs
address of C

Scenario 5.3

E2

E1

E D S

E’

Flood

C’

C

Normal traffic

Normal traffic

Scenario 5.4

C spoofs 
addresses of C and E

Scenario 5.5

Figure 5: Potential abuse scenarios

In the sixth entry in the table (figure 5.3), both C and
C’ sit behind encapsulator E. Clearly, neither D nor S can
distinguish between traffic from C and C’. S will request E
to filter traffic from C (spoofed or not), so C’ is successful
in denying service to C, although he cannot deny service to
other clients of S. In effect the problem has become one that
is local to C’s ISP, and there are a range of existing solutions
available to tackle this, including enabling ingress filtering.

The seventh entry (figure 5.4) describes the most subtle
attack to defend against. An attacker C’ at a legacy ISP
spoofs a traffic flood so that it seems to come from C, en-
capsulated by E. In this way, it could cause S to request
a filter at E that would block legitimate traffic from C. If
the packets claiming to come from C arrived with the evil
bit cleared, we would know that the outer header is valid, a
fact that can be propagated to S and the detection system
it uses. As a result, S could distinguish between packets
arriving on the real path C → E → D and the spoofed path
C

′ → E
′ → D by observing the evil bit. S can now deter-

mine whether the unspoofed traffic via E is hostile (in which
case it should request a filter) or only the traffic spoofing E

is hostile (in which case it should take no action, and rely
on prioritization to limit the effects of the attack). What if
the path C → E → D contained legacy ISPs, so that the
evil bit is set on all packets? In this case, traffic from both
paths would be indistinguishable. To remedy this, upon re-
ceiving the filtering request from S, D can provide E with
a random number to use to mark subsequent packets (the
encapsulation header can contain this). Now D can once
again distinguish between the two paths, and all it needs do
is to propagate this distinction downstream to S. D can use a
diffserv code point to do this, so S’s detector can again take
the right action to ensure that no legitimate traffic from C
is blocked.

The final entry in figure 3 presents an impossible scenario,
since the attacker cannot spoof an encapsulator from a non-
legacy ISP.

We will now proceed to discussing the direct attack cases
described in figure 4. The first entry does not represent an
attack. In the second and fourth entries the attacker sits
on the path between the encapsulator and the decapsulator.
These cases are hard to defend against, since the attacker
can blackhole legitimate filtering requests. In the fourth
case, unless requests are required to be digitally signed by
the decapsulator, the attacker can also spoof them to shut
down legitimate flows. Such digital signatures should be a
mechanism of last resort, reserved only for the case where an
on-path attacker is suspected, as they would greatly increase
the CPU load on both the encapsulator and decapsulator.
However, the encapsulator does already have the relevant
key chain to validate such requests, as this is needed to vali-
date prefix-to-decapsulator bindings. In reality though, this
is a case we are not greatly concerned about - on path attack-
ers should be rare (the normal bot infection techniques don’t
apply to routers) and in any event a compromised on-path
router has so many other ways to deny service, including
simply dropping the packets, that abuse of our mechanism
is not likely to make the problem worse.

The third and only remaining entry presents an attack
where attacker D’ spoofs the address of decapsulator D and
requests that encapsulator E install a filter blocking legit-
imate traffic from client C to server S (figure 5.5). This
is trivially solved without digital signatures by requiring a
three-way handshake, whereby a nonce sent from E to D
must be echoed back to E before a filter request will be
honored. In this way, even though D’ can send a malicious
filtering request, it will not be able to respond to E’s nonce,
since it is not on the path between E and D and will there-
fore not see it.

One final attack that does not rely on spoofing nor abusing
the filtering request consists of flooding the link between the
destination’s ISP and that ISP’s upstream provider. Since
the prioritization of packets happens only at the destina-
tion’s edge router, it may be possible to attack servers by
flooding the link. Many ISPs may be able to prevent this
by moving the place where diffserv categorization and pri-
oritization occurs from E1 (in figure 2) to the upstream
provider’s edge router D1. As this categorization is static, it
requires no active intervention on the part of the upstream
ISP, but it does require their cooperation to enable it.

4. IMPLEMENTATION ISSUES
In this section we discuss in more detail how the encap-

sulators and decapsulators should be implemented, how the



filtering and evil bit might work, and provide some basic
performance figures to show that off-the-shelf hardware is
up to the task.

4.1 When to Encapsulate?
If packets from a client to a server are encapsulated, should

the reverse path traffic also be encapsulated? If it is encap-
sulated, should the forward-path encapsulator serve as the
reverse-path decapsulator?

The architecture does not require either, but there are
advantages if both are true. If traffic is always bidirectional
through the encapsulator, it can pro-actively limit malicious
traffic, as described in [22]. Short of mandating symmetry,
which seems excessively inflexible, we can still gain these
benefits if the encapsulator knows which decapsulators will
enforce symmetry; this can be advertised using the route
distribution mechanism.

Should encapsulation be an always-on feature, or only en-
abled when under attack? The latter would essentially mean
that the decapsulator publicly advertises being under attack,
potentially inviting other attackers to cause further harm.
Our performance numbers, discussed later, lead us to be-
lieve that the best solution is to always encapsulate. This
also serves to publicly advertise which ISPs are being good
network citizens and which are not.

4.2 Filtering Protocol and Filters
To handle communication between decapsulators and en-

capsulators we need a new signalling protocol. The primary
purpose is to allow a decapsulator to request a filter from an
encapsulator, but as we discussed in Section 3, there needs
to be more to it than that.

The most important operation is the installation of filters.
The protocol should allow the decapsulator to specify what
the filter should match, the type of filter, what action to take
when a packet matches the filter, and an expiration time.

So what should the format of the actual filters be? From
an architectural point of view, a filter in an encapsulator can
be anything that stops unwanted traffic with minimal side
effects. It is in both sides’ interest to install the most specific
filters that actually suffice to block the traffic, so long as the
encapsulator can maintain sufficient state. In the case of at-
tacks which require a connection to be established, spoofing
is not an issue, so specifying both source and destination IP
addresses is desirable. In the case of spoofed attacks, the
worst case is a flooding attack on a link, where the source
addresses can be spoofed and the destination address can be
any address beyond that link. In such a case, the decapsula-
tor may be prepared to accept some collateral damage, and
request that all traffic from an encapsulator to the decap-
sulator should be blocked. In between these extremes, we
can envisage uses for various combinations of source address
prefixes and destination address prefixes.

While the protocol should be flexible enough to accom-
modate different types of filter, a good starting point would
be to initially support three types of filters: a prefix-based
IP source address along with a specific destination address;
a specific destination address with wildcard source address,
whereby the encapsulator will filter all traffic going to that
destination; and wildcard source and destination addresses,
to address the link flooding attack above. We believe these
would cover most of the requirements that might be en-
countered in the early stages of deployment, and that other

policies can be implemented with reasonable performance in
terms of these three.

A filtering request should also specify the action to take
when a packet matches a filter: besides dropping the packet,
the signalling protocol should be expressive enough to at
least support rate-limiting based on a token bucket, even
though such capabilities may not be available in all encap-
sulators.

Finally, filters should be soft-state - they should expire if
not refreshed to avoid the filter being orphaned if the decap-
sulator loses state. Additional ways to expire filters, perhaps
based on traffic levels, could be envisaged too, but they are
not strictly required to satisfy our basic requirements.

The remaining functions of the signalling protocol, as dis-
cussed in Section 3 are:

• Nonce exchange. The signalling protocol cannot use
TCP, as this would require too much connection state
at a decapsulator under attack. Thus an encapsulator
cannot blindly trust the IP address of a decapsulator
that requests a filter, as shown in Figure 5.5. Instead
it validates the decapsulator address by sending a ran-
dom nonce, and requiring the decapsulator to return
that nonce before it will install the filter.

• Request traffic marking. The decapsulator should be
able to specify a random number for the encapsulator
to include in the encapsulation header, so as to cope
with Figure 5.4.

• Request encapsulator list. The decapsulator should
be able to ask another decapsulator for the list of en-
capsulators corresponding to a specific client address
handled by that decapsulator. This allows for defense
against the scenario in Figure 5.2.

4.3 Evil Bit
Should the “evil bit” apply to all packets, or just to en-

capsulated ones? This impacts the type of filter needed at
the border routers of the server’s ISP. If the evil bit is ap-
plied only to encapsulated packets, router C1 in Figure 2
would have to first separate encapsulated packets from na-
tive ones, and then set the evil bit based on the peer the
packet came from. Border router E1 would classify all non-
encapsulated packets destined for the server to a lower pri-
ority traffic class, but it would also classify encapsulated
packets as lower priority if they have the evil bit set. The
alternative seems simpler: C1 sets the evil bit on all packets
from ISP A, and E1 installs a single filter based solely on
this bit.

Regarding where this bit would be implemented, the sec-
ond solution requires it to be in the regular IP header,
whereas the first is more flexible as it allows the evil bit to
be in the encapsulation header, which can be largely of our
own design. However, it is unclear whether current back-
bone routers have sufficient flexibility to set a bit in such
a header, or classify based on it. On balance, the simplest
solution may be to use a diffserv code point in the regular
IP header to signal that the “evil bit” is set.

4.4 Routing Protocol Design
We need a routing protocol to distribute the binding be-

tween network prefixes and decapsulator addresses to en-
capsulators worldwide. But this is not a routing protocol in
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compromised nodes.

the traditional sense, as it is agnostic to the path that the
encapsulated traffic takes to get to the decapsulator. Thus
these bindings are much more static than conventional rout-
ing information and moreover, the same encapsulation ta-
ble should be distributed to every encapsulator worldwide.
Even through these tables may be very large if our scheme is
deployed globally, the actual size of the data is well within
the capability of cheap commodity hardware. In terms of
a distribution mechanism, the requirement is not dissimi-
lar to that of NNTP[19] or BitTorrent[11], which are both
capable of distributing much larger volumes of data rela-
tively reliably to large numbers of hosts worldwide. Basi-
cally the requirement is simply for each domain to inject
its own prefix-to-decapsulator bindings into the routing sys-
tem, and for the routing system to then flood those bindings
worldwide in a reliable manner.

Obviously it would be simple to hijack traffic for a site
if an incorrect mapping could be distributed, so each bind-
ing needs to be secured using a digital signature. To do so,
some form of public key infrastructure is needed to estab-
lish a trust hierarchy. One possibility is to use a hierarchy
rooted at ICANN and delegated via the regional registries
to ISPs. An alternative would be to use a multiply-rooted
hierarchy anchored at the Tier-1 ISPs, delegated via Tier-
2s, and so on along pre-existing provider-customer relation-
ships. A third alternative would be to use a model similar to
that used for SSL, using arbitrary certification authorities
as trust anchors that are unrelated to the routing or address
delegation hierarchies. All three are technically viable, but
they have different political consequences; which would be
best is really outside the scope of this paper. However, we
note that the hierarchy rooted at the Tier-1 ISPs has the ad-
vantage that the trust chain matches the existing trust chain
of the underlying routing system, making anomalies easier
to detect. The disadvantage is that incremental deployment
would be harder than the SSL-like model which does not re-
quire initial buy-in from the Tier-1 ISPs. In reality a good
protocol design might permit any of these options, and the
solution used might evolve as incremental deployment pro-
gresses.

Once we have signed bindings, we need a distribution
mechanism for them. The problem is quite similar to that
which we proposed for pushing DNS data out worldwide[16].
The basic idea is to build a peer-to-peer distribution mech-
anism, built from infrastructure nodes such as our encap-
sulators, perhaps supplemented by additional distribution
nodes. Peerings between nodes need not follow the normal

routing adjacencies; they can simply be configured between
any two ISPs that have a business relationship, or who de-
cide to peer just for this purpose. The only requirement is
that the resulting network is connected. These configured
peerings would then be supplemented by additional learned
peerings which would make the overlay topology richer, so
that the overall peer-to-peer network has small-world prop-
erties resulting in rapid distribution of data.

As the bindings are signed, every node receiving one should
check the signature before passing it on to its peers. Thus
there is no possibility for a malicious node to inject bad rout-
ing data unless the certificate chain itself has been compro-
mised. Any node receiving bad data from a peer knows that
that peer is malicious. Such networks are extremely robust
to attack by insiders. The only real attack that is possible
is for a malicious node to receive a message but refuses to
pass it on. Figure 6, taken from [16], shows how robust such
overlay networks are. In this simulation, each node passes
on a message to two peers; three peers; or first two peers,
then (after a short delay) one additional peer who has not
yet received the message. This illustrates that the probabil-
ity of correct delivery is very high right up until the majority
of nodes within the network have been compromised.

The major cost in such a distribution network is to check
signatures. Although this could be done in the encapsula-
tors themselves, it is also possible to offload this checking
to a fast server at each ISP. Such a server can also cache
which signatures it has checked in the past, so only truly
new bindings need to be checked, even after a reboot.

Our conclusion is that the distribution of the routes and
the checking of signatures on these routes is not only feasible,
but also relatively easy and very robust.

4.5 Performance
In the long run, we would expect encapsulation and filter-

ing to become normal router or Ethernet switch function-
ality. Indeed, Juniper [18] already ships a hardware tunnel
interface module capable of encapsulation at 10Gb/s; the
missing part is mostly control software.

However, vendor support will be patchy early in the de-
ployment process, and cheap solutions will always be re-
quired. To this end, we have begun building encapsulators
and decapsulators based on very inexpensive 1U rackmount
servers. The results below use two-year old Opteron 250
processors running at 2.4 GHz. Similar performance rack-
mount machines currently cost under $1,000. We use the
Click [21] modular router software as the basis for the for-
warding plane of our implementation.

When addressing DoS issues, performance obviously mat-
ters a great deal, so we have done extensive performance
testing to demonstrate feasibility for these low-cost boxes.
For reference purposes, Figure 7(a) shows how Click slightly
outperforms Linux native forwarding; it also illustrates the
clear relationship between the size of packets being forwarded
and the throughput that is possible. Throughput is excel-
lent (above 800Mb/s) for all packet sizes larger than 200
bytes. Only with very small packet sizes does performance
degrade, with minimum sized packets achieving about 350
Mb/s, primarily due to limitations of the Ethernet hardware
and/or driver.

What packet sizes is an encapsulator likely to see? Dif-
ferent measurement studies give different results [29, 7, 8]
depending on where the monitor was located and when the
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Figure 7: Encapsulator performance

study was performed. The packet size distribution appears
to have strong modes at 40 bytes and 1500 bytes, with a
range of values in between. Mean packet sizes appear to
range from 200 to 600 bytes, which bodes well for our im-
plementation. In the worst case, if all the traffic were 40
byte TCP Acks, we could only handle about 350Mb/s out-
going. However this would typically correspond to an in-
coming TCP data rate of upwards of 5Gb/s, so our basic
forwarding performance seems more than adequate for many
deployment scenarios.

Figure 7(a) further shows that adding IP-in-IP encapsula-
tion to the forwarding path results in no significant degrada-
tion of performance. This curve was obtained using a small,
static routing table, but a similar test using a large routing
table of 200,000 routes (approximately the size of backbone
BGP routing tables) yielded almost identical results.

Besides forwarding packets, the other main function of our
encapsulators is filtering. Figure 7(b) shows performance
figures for filtering. The encapsulator uses a hash-based
filter, with filters consisting of source and destination IP
address pairs. The “Click Basic” curve is for reference. The
curve labeled “Click Encap with Filter” is generated with a
filter table consisting of 2,000 filters, but with all the traffic
destined for a single non-filtered address. This shows that
adding such a filter bank to the forwarding path has an
almost negligible impact on performance.

With hash functions, we always need to be careful that
performance does not degrade unacceptably if we get hash
collisions. A further test (not shown) which forced the for-
warding path to always traverse a 20-node chain resulted in
minor degradation of performance.

The final curve attempts to probe the worst case in terms
of CPU cache locality. We loaded the hash table with 2,000
random filters and tweaked the hash function to emulate
traffic to random destinations so that the filter lookup for
each forwarded packet hit a different hash bucket. The 2,000

number was chosen to create a heavily loaded hash, since
the hash table contained approximately 1,000 buckets. The
concern was that CPU cache thrashing could seriously de-
grade performance, but even in such an extreme scenario the
encapsulator performed rather well, with the curve closely
resembling the previous curve where all traffic hit the same
hash bucket.

What about the encapsulator’s performance when traffic
is actually being dropped by the filter? For this purpose we
conducted one further test using two simultaneous sources,
one whose traffic was dropped and another one whose traf-
fic was forwarded. For packets larger than 200 bytes, the
unfiltered traffic saw no degradation in performance; for
minimum-sized packets, the encapsulator was able to pro-
cess packets at a rate of over 390 Mb/s.

For the decapsulator, preliminary testing shows that Click
can decapsulate packets without a significant performance
hit, giving results similar to the “Click Encap” curve from
figure 7(a). We will conduct further implementation and
testing to investigate the performance of the decapsulator
when it has to keep temporary state while locating the en-
capsulators that malicious flows are coming through, but we
expect the results to be similar to those for filtering.

5. INCENTIVES FOR DEPLOYMENT
In a typical deployment scenario, an ISP might offer DoS

protection as a premium service and a host (commonly a
server) would be placed behind a decapsulator. Other ISPs
with hosts wanting to connect to the server would then de-
ploy encapsulators; in exchange, traffic from these ISPs to
the server would be given priority at the border routers of
the server’s ISP at all times.

Server-side ISPs
Since a server will pay a premium for protection against
DoS attacks, server-side ISPs such as ISP E in figure 2 have
a clear incentive for deployment. Such deployment would
be neither difficult nor expensive. In most cases decapsula-
tion can be performed at sufficient speed for a busy server in
an inexpensive 1U rack-mount server running our software.
A large data center may need multiple such decapsulators,
but their cost is very small compared to other data center
costs. ISP E also needs to obtain a security certificate from
someone higher up in the trust hierarchy, and uses this to
sign the mapping between its servers’ address prefixes and
the decapsulator address. The decapsulator machine then
needs to be configured with at least one peer (although this
does not need to be at an immediately neighboring ISP), so
it can advertise the network prefix-to-decapsulator bindings
to encapsulators in the rest of the Internet. Finally, E in-
stalls classifiers at its edge routers (in this case E1) so that
incoming packets that do not have the evil bit set get sent
to a higher priority diffserv class.

Client-side ISPs
Customers wanting to connect to the protected servers will
pressure their ISPs to deploy encapsulators. Having a legacy
provider will mean that a client receives lower priority than
one connected through a non-legacy ISP. Not only may de-
lays be longer during normal operation, but also little or
no service will be given if the server is attacked. However,
we are not convinced that such customer pressure will be
sufficient, especially in the early stages of deployment, to



entice ISPs to deploy additional equipment. The costs may
be small, but they are there nonetheless.

Another incentive for ISPs deploying encapsulators is a
potential for a reduction in tech-support costs. Encapsula-
tors should have no false positives - if a receiver does not
want traffic, only then it is shutdown. The one case where
there might be false positives is Scenario 5.3 in Figure 5, and
this is not an issue for the many ISPs that perform ingress
filtering. In the absence of false positives, encapsulation fil-
ters automatically isolate the bad behavior of a compromised
client host, and should require less human intervention that
current, mostly manual, mechanisms for dealing with com-
promised hosts. The hope is that deploying an encapsulator
allows the ISP to deal with a bot being used in a DoS attack
at their leisure, reducing operational costs.

This client-side deployment is even simpler than on the
server-side: configure a fast PC to act as an encapsulator,
configure it to receive decapsulation routes from one or more
peers, and have it clear the “evil bit” in packets it encapsu-
lates. Should the encapsulation infrastructure gain support
from ISPs, it is likely that this functionality would quickly
become a normal feature of access routers, and so the de-
ployment cost would be close to zero.

Transit ISPs
There probably are no pure transit ISPs (most have direct
customers), but the deployment for any such ISP would be
trivial: simply configure border routers to set the evil bit
for packets that come from legacy peers. If the evil bit is
implemented as a diffserv codepoint, then this can be done in
all current backbone routers without requiring any upgrades.

5.1 Early Deployment
It is easy to see that if such an architecture started to be

deployed successfully, the incentives are such that increasing
deployment increases the incentive to deploy. The question
then is how to persuade potential early adopters to deploy.

Any site that is attacked has incentives to deploy decap-
sulators, but only if they allow the attack to be reduced.
However this requires that sufficient traffic traverses an en-
capsulator, and there is little incentive for that to happen
until many decapsulators are deployed. One option would be
for a large ISP or Internet Exchange Point to offer an encap-
sulation service. The site under attack could then subscribe
to this service, and all their incoming unencapsulated traf-
fic would be routed there to be encapsulated. This would
bootstrap the deployment of decapsulators and then, some-
time later, there would be incentive to deploy encapsulators
directly at customer-facing ISPs.

6. RELATED WORK
Various techniques have been proposed in the literature

to counter DoS attacks. Approaches based on capabilities
[2, 35, 24] generally rely on clients having to ask the server
for permission to send packets. If the server decides to allow
the connection, it replies with a capability token, which the
client includes in subsequent packets and which the network
polices. Such schemes, while technically feasible, face daunt-
ing initial deployment issues, since they depend on changes
to the end clients as well as the network. Other solutions are
based around constructing overlays to protect victims [20,
23, 14], but these tend to operate above the network layer,
assuming the presence of other mechanisms to protect it.

Pushback [17] relies on identifying misbehaving aggregates
and iteratively asking upstream routers to filter them. Un-
fortunately, this scheme relies on paths where every router
has implemented Pushback and is effective only when the
routers are close to the sources of the traffic.

In [4], the authors employ a solution that has a few sim-
ilarities with this paper, but its success depends upon the
core of the network (at least until full deployment is achieved)
to perform the actual filtering. In addition, the solution
relies on a variant of IP route record to mark where pack-
ets came from, so that intermediate points in the network
would need modification. In contrast to this, the architec-
ture presented in our paper does not require participation
from middle-of-the-network nodes.

Firebreak [13] also suggests placing control points called
firebreaks near the edges so that traffic can be stopped near
its sources. Unfortunately, it suffers from several shortcom-
ings. First, the firebreaks use IP anycast to advertise all of
the addresses of protected targets. Not only is large-scale
IP anycast not well understood nor widely deployed, but ad-
vertising in this fashion is likely to present scaling problems.
Second, the paper points out that, thanks to IP anycast,
traffic from clients whose ISPs do not have firebreaks will be
redirected to an ISP who does have firebreaks. However, it is
quite unclear what incentive this latter ISP has for accepting
this traffic nor why should it deploy a firebreak in the first
place if there will be the possibility of having to deal with
another ISP’s traffic. Finally, the scheme suggests stopping
traffic from clients connected to legacy routers from going
directly to the target (without first traversing a firebreak)
by only advertising the route to deployed ISPs. While this
will indeed prevent a legacy router from forwarding pack-
ets to a protected target, it assumes that there will be no
legacy ISP in the path between deployed ISPs and the tar-
get ISP. If there were, the route would not be advertised to
the legacy ISP and any deployed ISP behind it would be
oblivious to the fact that a route exists. This presents a
significant problem, especially during initial deployment.

In [12], the use of Diffserv is suggested to distinguish traf-
fic from well-managed sites that protect their hosts against
penetration. Our scheme also uses diffserv, but to indicate
a site will respond to filtering requests.

A more imaginative and radical approach to combatting
DoS attacks [33] consists of increasing the ratio of good traf-
fic to bad traffic arriving at a victim by asking normal clients
to send at a higher rate. Despite its merits, operators will
likely be reluctant to deploy a DoS protection scheme that
increases traffic during an attack. Commercial solutions gen-
erally involve buying special boxes [3, 25, 9] or redirecting
traffic through scrubbing centers during attack [1, 27], both
costly options.

CenterTrack [31] proposed solving the problem of tracing
sources with an overlay network based on IP-layer tunnels,
linking edge routers to a central tracking router or small
network of tracking routers. This would be an obvious target
for DoS attacks, so it is unclear how effective this approach
would be, nor is it clear what initial deployment incentives
exist under this scheme. Traceback mechanisms [6, 30, 34,
28] consist of marking a small percentage of packets as they
travel from sources to server; the server can then use this
information to reconstruct the path they travelled. MPLS
can also be employed for this task, though deploying it across
AS boundaries may present an insurmountable obstacle.



7. CONCLUSIONS
We have presented a novel and conceptually simple archi-

tectural solution to the problem of large, distributed Denial-
of-Service attacks. We finally provide a way for a receiver
to simply ask the network to stop sending unwanted traffic.
Great care must be taken with such mechanisms to avoid
opening up new channels for attack, and we believe we have
addressed these issues. We have shown that our mechanisms
are largely robust to spoofing via both direct and indirect
attacks, and have exhaustively enumerated potential attack
vectors, showing how they can be overcome with minor ex-
tensions to the architecture. Thus we believe our solution
is safe, even in incrementally deployed scenarios, where we
cannot control all the players.

While our end-network mechanisms should eventually be-
come standard functionality on edge routers, we have shown
that the mechanisms can also be implemented on current
low-cost off-the-shelf hardware, running efficiently even un-
der heavy load. In the network core, our scheme makes use
of already-deployed routers without requiring any additional
functionality from them. No changes are needed to any end
systems.

Further, our architecture does route distribution using a
peer-to-peer mechanism that is both simple and extremely
robust to attack. This imposes no additional burden on the
existing inter-domain routing protocols.

Finally, the proposed architecture is not only incremen-
tally deployable from a technical point of view, but also
provides incentives for both ISPs of victims and those of
sources or attackers.
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