
Revisiting Content-Based Publish/Subscribe

Costin Raiciu David S. Rosenblum Mark Handley
Department of Computer Science

University College London
{c.raiciu|d.rosenblum|m.handley}@cs.ucl.ac.uk

Abstract

Content-based publish/subscribe is a very appealing in-
teraction model that has attracted intense efforts from the
research community in the quest to obtain “Internet-wide”
scalability. Despite many promising proposals, wide-area
applications using content-based publish/subscribe are yet
to be deployed. In this paper, we list possible reasons for
this lack of adoption and propose a series of approaches to
remedy this state of affairs. To simplify the problem tackled,
we argue for the separation of content-based matching and
event-routing. To cope with application diversity, we pro-
pose the development of configurable solutions for parts of
the problem space and provide a proof-of-concept solution
for content-based matching.

Keywords: Content-Based Publish/Subscribe, Layering,
Configurability

1 Introduction

Content-based publish/subscribe (CBPS) is a very ap-
pealing interaction model that has attracted intense ef-
forts from the research community in the quest to obtain
“Internet-wide” scalability [4, 1, 15]. Despite many pro-
posals, wide-area applications using CBPS are yet to be de-
ployed.

In this paper, we attempt to understand the reasons for
this lack of deployment and proposes a series of remedies.
First, we propose decomposing the problem of content-
based publish/subscribe into its constituent sub-problems,
namely content-based matching and event delivery. These
are then solved separately. Although controversial at first
sight, this approach allows us to focus better on the two sim-
pler facets of the problem without any important losses of
performance or functionality. Indeed, content-based match-
ing solutions can be combined with event delivery solutions
to yield CBPS solutions.

The applications suitable for CBPS are extremely di-
verse. Moreover, static1 solutions that could scalably ac-

1Static means that the architecture does not adapt to its input.

commodate all these applications are provably impossible
to create. We further advocate that solutions should be de-
signed to be easily configurable or should adapt to applica-
tion characteristics. In support of this claim, we provide
a proof-of-concept configurable architecture for content-
based matching.

This paper is structured as follows. In Section 2, we dis-
cuss the reasons for the disappointing lack of adoption of
content-based publish/subscribe. Following in Section 3,
we argue for the separation of content-matching and event
delivery. In Section 4, we advocate the development of
configurable architectures and propose a simple design as
a proof-of-concept. Section 5 discusses issues related to
the deployment of CBPS solutions, concluding in Section 6
with a summary of arguments.

2 Current State of Affairs

Experience gained during a literature and application re-
view we have conducted, reveals the following (perhaps ob-
vious) reasons for the lack of wide-area applications that use
CBPS nowadays: a) complexity of the general CBPS prob-
lem, b) heterogeneity of the applications suitable for CBPS,
and c) lack of wide-area deployment of CBPS solutions. Let
us expand the above.

2.1 Complexity of CBPS
The complexity of content-based publish/subscribe fol-

lows from the difficulty of solving its related sub-problems,
content-based matching and event delivery. Content-based
matching is the problem of finding all the subscriptions that
match a given notification. Event delivery is the task of de-
livering the notification to the set of interested subscribers
selected with content-based matching.

A first indicator of the difficulty of content-based match-
ing is its tight relationship with the problem of supporting
enhanced queries in large-scale networks, currently a very
active research field (see the survey by Risson et al. [20]).
Furthermore, a simple analysis of the content-based match-
ing problem shows that in the worst case, a solution to it
cannot be scalable on all dimensions. Let H be the maxi-
mum number of routing hops a notification visits until it is

Table 1. Application characteristics
Online Games [7, 9] RSS Feeds [11] Stock Quotes [22] Security Alerts [6] Location Based Services [5]

Expressiveness range matches keywords range matches set inclusion spatial queries
Publisher Bandwidth 30kbps small,irregular ∼ 100Mbps very small 1kbps

Maximum Latency 0.1s-1s ∼10s ∼0.01s 0.1 − 1s 0.1 − 1s
Subscription clustering multimodal power law power law power law multimodal

#Subscribers ∼102 − 103 ∼106 ∼ 103 ∼ 106 106

Subscribe frequency high low medium low low
#Publishers 102 − 103 104 1 − 10 103 106

Publish frequency ∼ 103 − 104/s 102/s 103/s irregular bursts 10−1 − 1/s

matched against all relevant subscriptions, R the replication
rate of subscriptions and N the number of nodes in the sys-
tem. Define Ir and Is, load balancing indicators for routing
and storage respectively, as the ratio between the maximum
fraction of the load hosted by any node in the system to
the average fraction of load (routing and storage) hosted by
the nodes in the system. Clearly, the parameters above are
low-level parameters of the architecture; however, we show
in Section 4.4.1 that there is a tight relationship between
these and high-level requirements such as matching latency
or throughput. It can be easily proven that, in the worst
case2: H · R · Is ≥ N and H · R · Ir ≥ N [16]. The
relations above show that optimizing some aspects of the
solution (such as H and R) will lead to less scalability on
the remaining dimension (load balancing).

Event delivery is the problem of dynamic multicast,
where the set of destination hosts can change with every
message. The difficulty here is twofold: first, the opti-
mal topology can change with every message, and thus it
should be computed accordingly; and second, even comput-
ing the multicast tree for a single message is difficult when
optimizing for specific cost metrics (such as total number
of hops)—in this case, the problem is related to comput-
ing the minimum Steiner tree, which is known to be NP-
complete [18].

2.2 Application Heterogeneity
We selected and analyzed a few applications that ei-

ther have been proposed as suitable for CBPS by other re-
searchers or seem natural for this interaction model. The
results are summarized in Table 1. The first observation is
that applications suitable for CBPS-style interaction exhibit
significant diversity. The wide span of input loads (with
publication frequency ranging from 1 to 103 events per sec-
ond), combined with the diversity in requirements (tolerable
latency varies from 0.01s to 10s) and different requirements
for expressiveness seriously complicates the task of creating
a one-size-fits-all solution.

In contrast, most existing CBPS proposals are not tai-
lored for specific applications, aiming for generality. Here,
architectural design decisions (that embody various opti-

2The worst case is when the number of subscriptions matched by a
notification is linear in the total number of subscriptions and vice-versa

mizations) are usually based on expected desirable proper-
ties of the applications rather than the specifics of a singular
application. However, few applications can naturally ex-
ploit the features of any one architecture.

Let us consider an example. SIENA [4] uses a span-
ning tree of brokers to implement distributed CBPS. Sub-
scriptions are propagated from the broker closest to the
subscriber to all the brokers in the network, with the op-
timization that a subscription is not propagated if a more
general subscription has been propagated already. SIENA

aims to minimize bandwidth consumption and, when possi-
ble, memory utilization. An ideal application that would
benefit from SIENA should exhibit the following proper-
ties: subscribers with matching interests should be con-
nected to nearby servers (to make bandwidth and memory
savings worthwhile), there should be enough commonality
between subscriptions, and applications should be insensi-
tive to latency (as content-based matching is performed at
each forwarding step). Of the applications we have listed,
it seems that only location-based services have the required
type of subscription clustering, if subscribers only subscribe
to events based on their current geographic position. How-
ever, work in this area shows that it is more natural for mo-
bile devices to act as publishers of their current location,
while content-providers subscribe (using spatial subscrip-
tions) to areas of interest [5]. The analysis of other proposed
solutions (such as Gryphon [1] and Hermes [15]) leads us to
similar findings: few applications can naturally exploit the
characteristics of any one existing architecture.

2.3 Lack of Wide-Area Deployment
The current status quo in CBPS, with no architecture

widely deployed, delays the creation and deployment of ap-
plications that use CBPS. Closing a vicious circle, the lack
of applications impairs the development of improved, real-
life usable solutions.

CBPS represents a compromise between the extremes
of publisher-side filtering of messages (with events directly
transmitted to interested subscribers) and subscriber-side
filtering of messages (with events broadcasted to all sub-
scribers). Depending on the assumptions of the application,
some solutions are more desirable than others. However,
it is felt that CBPS obtains important performance bene-

fits and achieves better scaling for a wide range of appli-
cations [4, 1, 15]. Nevertheless, applications that appear
suited for CBPS will be implemented in other (perhaps
more expensive) ways, if these solutions are readily avail-
able. Therefore, the availability of CBPS solutions on wide-
area networks is a prerequisite for application development.

There is an interesting parallel to note in the very ac-
tive research area of distributed hash tables (DHTs). Be-
fore 2004, there had been an impressive amount of research
in the area and a large range of applications had been pro-
posed and implemented by the DHT community. However,
nobody from outside the community had built an applica-
tion that used DHTs. Asserting that the reasons were the
difficulty of running a DHT for a long time combined with
the need for a large infrastructure, researchers proposed an
infrastructure deployment of a DHT that would be publicly
available. To this end, OpenDHT [19] was created and de-
ployed on the PlanetLab testbed. Spurring the adoption of
CBPS appears a more difficult problem; it is highly unlikely
that an infrastructure deployment of a single particular solu-
tion to CBPS can support all possible types of applications,
and therefore deploying new applications might also require
deploying new solutions for CBPS.

3 Layering CBPS

Current monolithic approaches have not been adopted
by real applications and have not been widely deployed
yet. Although they can theoretically achieve optimal per-
formance, it appears that creating a solution that is optimal
for any given application is rather difficult with a monolithic
approach. In our attempt to make the general CBPS prob-
lem tractable, we propose to solve the two sub-problems
separately. This can be thought of as a layering of content-
based publish/subscribe, in two sub-layers: content-based
matching and event delivery.

The event delivery layer’s task is to deliver messages
to the subscribers and exports a single API to the content-
based matching layer: send(message, destination list). The
content-based matching layer’s task is to find the subset of
subscriptions that match a given notification, which are sub-
sequently passed to the event delivery layer. Note that this
operation is distributed, as the content-based matching layer
will not necessarily gather the full destination list at one sin-
gle node before initiating the delivery of the event.

Layering brings a series of benefits but also has some
costs. The most important drawback is the ability to in-
dependently optimize the two layers disregarding their be-
havior in composition, which can lead to an overall sub-
optimal solution. This is not discouraging: if the result-
ing performance is good-enough for most applications, then
layering is a viable choice. In a similar argument, cre-
ators of SQL argued for good-enough performance for data-
bases that could be easily tailored for every application.

Clearly, the performance of SQL-based databases is worse
than that of application-tailored implementations, but this is
outweighed by the advantage of easily supporting new ap-
plications or changes to existing solutions. Our argument is
stronger in that application-tailored solutions seem very dif-
ficult to obtain in CBPS in the first place. Asserting that the
costs are moderate, we propose a research agenda focusing
on ease of reconfiguration. To this end, we propose a proof-
of-concept configurable content-based matching solution in
Section 4.

3.1 Benefits of Layering
The main gains are simplicity and modularity. Solving

CBPS becomes now equivalent to solving its two subprob-
lems; this endeavor, although far from trivial itself, is sig-
nificantly simpler than the original problem. Modularity al-
lows for easier adaptability, differentiated scaling and cre-
ation of separate trust domains.

Layering implies easier adaptability, as new applica-
tions can be supported by combining different solutions
for content-based matching and event delivery. Several so-
lutions to both problems already exist that could be used
straightaway or slightly adapted to work in the CBPS con-
text. Practically all the work done on supporting enhanced
lookups on DHTs (such as range queries [2] or keyword
searches [21]) can be used to implement content-based
matching. Numerous event delivery solutions already ex-
ist (see [3], for instance) or can be adapted from existing
multicast proposals.

Frequently, there is a different scale needed to solve the
two sub-problems. For instance, stock quote subscriptions
are likely to be stable and on the order of millions, if we
assume that clients are individual investors. Using a clus-
ter of well provisioned nodes (tens of nodes) that partition
the subscriptions is a good solution for the content-based
matching layer [22]. On the other hand, ensuring the timely
delivery of the events to the numerous subscribers requires
a larger number of geographically scattered nodes.

Modularity also allows a separation of the domains of
trust in a CBPS solution, which might be mandatory for
security-sensitive applications. The two layers require dif-
ferentiated access to data: the matching layer requires ac-
cess to notification and subscription payloads to perform
content-based matching, as confidential content-based rout-
ing is fairly expensive [17]; in contrast, the event delivery
layer need not access the subscription or notification pay-
load, requiring instead the addresses of the subscribers. Re-
turning to the stock quote example, subscribers’ interests
will only be divulged to the cluster of servers (which can
potentially be trusted), while the more numerous nodes in
the event delivery layer only deliver encrypted notifications.
Security sensitive applications are forced to use layering in
order to minimize the number of nodes that must be trusted
with confidential information.

3.2 Costs of Layering

The costs associated to layering are due to inter-layer
signalling—non negligible when the layers do not reside on
the same nodes—and to the cost of maintaining partially
overlapping data structures in both layers. Self optimiza-
tion of both layers disregarding their behavior in composi-
tion can lead to a sub-optimal solution to CBPS.

4 Configurable architectures

We have seen that applications suitable for CBPS are
quite diverse and that one-size-fits-all static solutions are
impossible to create. This mandates that application re-
quirements must be taken into account when designing
CBPS solutions. Therefore, supporting a new application
would necessarily trigger a lengthy process of designing a
solution, implementing it and evaluating its performance.

We have proposed layering as a first step towards
application-specific optimizations. To further increase the
ease of supporting different applications, we advocate the
creation of configurable solutions such that, given a new ap-
plication, we can tune such a solution to provide acceptable
performance for that application. For brevity, we will focus
in more detail on configurable solutions for content-based
matching, ignoring similar solutions for event delivery.

In the upcoming sections, we describe a configurable ar-
chitecture for content-based matching and show that adjust-
ing its parameters influences high-level properties such as
matching latency or maximum publication throughput. The
purpose of this architecture is illustrative, aiming only to
show that it is possible to create configurable architectures;
this simple solution has a number of deficiencies that might
preclude its direct use in the real world.

4.1 Mapping Performance Requirements
to Architecture Characteristics

Model. We derive a simple model of a hypothetic content-
based matching architecture and study the dependency of
two representative application requirements—throughput
and latency—on parameters describing the architecture. We
assume that brokers are connected in an overlay network
(in some arbitrary topology), the links between the brokers
have infinite bandwidth, and that per-link message propaga-
tion times are constant throughout the network. We define
R as the average number of replicas per subscription and H
the maximum number of nodes a notification visits before
meeting all relevant subscriptions.

Assuming that all nodes are idle, the content-based
matching latency of a message is in our simplified model:
latency = k1 · H +

∑H
i=1 match(storei). In the formula,

k1 is the constant propagation time of a message and match
denotes the local matching time at node i as a function of
the number of subscriptions stored at i, storei.

The formula shows that latency directly depends on H ,
and therefore optimizing latency can be achieved by se-
lecting proper values for H . Local matching time increases
at most linearly with storei as long the node’s memory
size (M) is large enough to hold all subscriptions, and
quickly deteriorates after the memory is full due to ac-
cesses to secondary storage. To optimize latency, we choose

H = �
∑

subscriptions

M � + 1.
The maximum matching throughput without loss ob-

tained by a string of idle nodes is the throughput of the most
loaded node: throughput = minH

i=1
1

match(storei)
.

Optimizing matching throughput when
∑

storedi is
constant, is equivalent to evenly balancing subscriptions
across the H nodes, thus ensuring that Is = 1. When H
increases, assuming Is = 1, throughput will increase. In
reality, this need not necessarily be the case, as bottleneck
links and nodes might be included in the string of nodes
therefore producing the opposite effect.

The calculations above assume all nodes are idle. How-
ever, local matching time experienced by a single packet
depends on the load of the node; when the node becomes
congested, the service time will increase sharply due to ex-
ploding queue sizes. In this case, latency will increase
and throughput will decrease. We resort to replication
to spread the notification load: notifications will follow
one of multiple available sequences of H nodes to find
matching subscriptions. Minimizing the maximum latency
and maximizing the minimum throughput of these strings
of nodes requires evenly balancing routing load, achieved
when Ir = 1. Therefore, increasing R and minimizing Ir

benefits both latency and throughput.

Discussion. Our simplified model shows that application
level requirements such as latency and throughput can
be improved by controlling lower level parameters such as
load balancing (Ir, Is), replication rate R or number of hops
H . Although the real-world dependencies of the high-level
metrics cannot be inferred from this simple model, we can
qualitatively extrapolate these dependencies for the general
case; the only danger is that real world restrictions (such
as limited bandwidth) will dampen the effect the low-level
parameters have on their application level counterparts.

4.2 A Configurable Architecture
Model. Let N be the number of available nodes, R the de-
sired replication rate and H the maximum number of rout-
ing hops. We assume all the nodes have unique identifiers
chosen uniformly and randomly from a Chord-like circular
identifier space (see Morris et al. [13]). The circular space
is divided into X contiguous regions numbered 0 to X − 1,
such that N = X · R. The cluster identifier space is also
circular (i.e. it wraps). The nodes (approximately R) that
belong to the same part of the circular space form a cluster.

We assume that a broadcast primitive is available inside a

cluster and that clusters are connected such that every node
in cluster t connects to all the nodes in cluster u, for t �= u,
resulting in an almost complete mesh of nodes.

Given knowledge of R and X , each node can compute
the cluster it belongs to by using its identifier and estimating
N from the number of entries in its routing table. Therefore,
the cluster membership protocol is completely distributed.

When a subscriber wishes to express its interests, it uses
a rendezvous function that takes as input the subscription
and outputs an integer value t that denotes one of the X
clusters. The subscriber will also select a random integer
r in the range [−H

2 , H
2]. The subscription will be sent to a

random node in the cluster numbered t+r. The subscription
will then be replicated to all the nodes in the t + r cluster
(∼ R nodes) by using the broadcast operation.

The publication process is a random walk through H
nodes, each belonging to a different cluster, with the pur-
pose to evenly balance load across nodes in a cluster. When
a message is published, the publisher will apply the ren-
dezvous function to the notification to obtain a cluster num-
ber t. The notification will be sent to a random node in
the t − H

2 cluster. This node matches it against local sub-
scriptions and forwards it to a random node in the cluster
numbered t − H

2 + 1; the new node will do the same until
H nodes are traversed by the notification.

Solution Properties. The maximum number of routing
hops is H . The replication rate is R. The load balancing
of the solution is Ir = N

H·R and Is = N
H·R . Since R and H

can be chosen arbitrarily, this simple architecture is indeed
easily configurable and can potentially support completely
different classes of applications.

Complete connectivity. Recent work has shown that main-
taining complete routing tables for overlays containing up
to a few million nodes is acceptable, under reasonable
rates of churn [8]. If this cost is too high, we can trade-
off some routing efficiency (stretching paths with a factor
of log N) for smaller routing tables (either O(1) [12] or
O(log n) [13]). In this case, N can be estimated by querying
a single random node [10].

Rendezvous functions. Subscriptions and notifications
are directed to corresponding clusters by using rendezvous
(RV) functions. Ideally, similar subscriptions should be
stored on the same cluster, to improve matching perfor-
mance. The fact that we use single-output rendezvous func-
tions (i.e. a subscription must be stored on a single clus-
ter), limits the class of usable RV functions. One possible
RV function for subscriptions would be to use a primary
key attribute of the notifications to partition the subscrip-
tion space. For instance, if topic is an attribute present in
every message, partitioning its range would yield the de-
sired RV function. Alternatives include the functions used
in Hermes [15], which hash the event type of notifications

and subscriptions to obtain the storage node.

Flexibility. The solution we have described can support
multiple applications with different characteristics on the
same infrastructure of nodes. If every application includes
the same application-dependent configuration parameters
(R and H) in all its messages, nodes can perform the nec-
essary operations (random routing and cluster replication)
by partitioning the virtual space for each received message.
The overhead of this scheme is small.

Caveats. This solution, albeit simple and easily config-
urable, has some deficiencies. The average performance
is the same as the worst case performance, as the solution
treats every application as having uniform load. It would
be desirable to have a small average(H) and only bound
the worst case routing hops with H . A consequence of this
is that subscriptions are replicated without considering their
characteristics: it would be desirable to correlate an increase
in the replication rate of a subscription with an increase in
the number of notifications it matches. Furthermore, all the
available nodes are automatically assigned to the applica-
tion, disregarding the actual load of the application; a better
policy would be to provide the minimum number of nodes
that supports the application’s load. Finally, the measure
of load balancing (for both routing and storage) is relative,
making the implicit assumption that nodes are homogenous.
Clearly this is not the case in a real environment, as absolute
loads need to be taken into account. All of these constitute
interesting problems for future research.

5 Deployment Issues

The discussion so far has focused on ways of ensuring
easier adaptability of CBPS solutions to different applica-
tions. The development of new solutions, however, must be
accompanied by wide-area deployments that can be used to
compare the performances of different solutions and enable
real applications. In this section we aim to complement the
argument of this paper by describing techniques that would
ease the deployment of CBPS; the technical realization of
some of these proposals is a research agenda in itself.

The PlanetLab testbed [14] seems to be a good candi-
date infrastructure for deployment of research prototypes of
CBPS solutions and applications, as its several hundred net-
worked nodes are freely available to the scientific commu-
nity. To minimize the effort of development cost and to fa-
vor cooperation, the functionality of PlanetLab nodes must
be enhanced in several ways. First, APIs should be spec-
ified that ensure interoperability of different CBPS build-
ing blocks. A built-in code-base should provide function-
ality common to all CBPS solutions such as networking,
fault-tolerance and logging. These will lower the effort of
developing a new solution down to the development of its
added functionality. Finally, a library of existing solutions

should be available to allow multiple applications to seam-
lessly compose a CBPS solution. This base should also be
extensible with new proposals.

Beyond this basic functionality, there seem to be oppor-
tunities as well as challenges for providing more complex
features, such as global load balancing and fairness to en-
sure “friendly” usage of PlanetLab nodes. Assigning to
each application the number of nodes appropriate to its in-
put distribution, combined with load balancing, is another
research path worthy of exploration.

6 Summary

Despite its appeal and the valuable research in this area,
wide-area CBPS is not currently used by any large-scale
application. In this position paper, we have argued for a
series of approaches to remedy this state of affairs.

We propose layering CBPS into content-based match-
ing and event delivery, in an attempt to contain the over-
all complexity of the problem. Layering favors simplicity
and modularity. Modularity allows adaptation through the
composition of content-based matching and event delivery
solutions, some of which are already available. Modularity
also allows the use of different scales for the two layers and
implicitly creates separate domains of trust that can be used
to accommodate security-sensitive applications.

Observing that applications for CBPS exhibit significant
diversity, we advocate the development of configurable so-
lutions for content-based matching and event delivery that
can foster diversity through reconfiguration. We show that
application requirements are tightly related to architecture
characteristics—such as replication rate, number of rout-
ing hops and load balancing—and propose a simple config-
urable architecture for content-based matching. Although
not deployable in its current form, this architecture serves
as a proof-of-concept that reconfiguration is possible; we
hope it will spark new research in this direction.

Acknowledgement

We would like to thank Lucian Popa for numerous dis-
cussions and thoughtful reviews on previous versions of this
paper. Costin Raiciu is supported by a UCL Departmen-
tal Studentship. David Rosenblum and Mark Handley hold
Wolfson Research Merit Awards from the Royal Society.

References

[1] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E.
Strom, and D. C. Sturman. An efficient multicast protocol
for content-based publish-subscribe systems. In Proceed-
ings of ICDCS, 1999.

[2] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Sup-
porting scalable multi-attribute range queries. In Proceed-
ings of SIGCOMM, 2004.

[3] F. Cao and J. P. Singh. Medym - match early with dynamic
multicast. In Proceedings of Middleware, 2005.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Transactions on Computer Systems, 19(3), 2001.

[5] X. Chen, Y. Chen, and F. Rao. An efficient spatial pub-
lish/subscribe system for intelligent location-based services.
In Proceedings of the Workshop on Distributed Event Based
Systems, 2003.

[6] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end contain-
ment of internet worms. SIGOPS Oper. Syst. Rev., 39(5),
2005.

[7] J. Farber. Network game traffic modelling. In Proceedings of
Workshop on Network and system support for games, 2002.

[8] A. Gupta, B. Liskov, and R. Rodrigues. Efficient routing for
peer-to-peer overlays. In Proceedings of Networked Systems
Design and Implementation, 2004.

[9] T. Henderson. Latency and user behaviour on a multiplayer
game server. In Proceedings of the Workshop on Networked
Group Communication, 2001.

[10] K. Horowitz and D. Malkhi. Estimating network size from
local information. Inf. Process. Lett., 88(5):237–243, 2003.

[11] H. Liu, V. Ramasubramanian, and E. G. Sirer. Client be-
havior and feed characteristics of rss, a publish-subscribe
system for web micronews. In Proceedings of Internet Mea-
surement Conference, 2005.

[12] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable
and dynamic emulation of the butterfly. In Proceedings of
Symposium on Principles of distributed computing, 2002.

[13] R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications. In Proceedings of SIGCOMM, 2001.

[14] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blue-
print for introducing disruptive technology into the internet.
SIGCOMM Comput. Commun. Rev., 33(1), 2003.

[15] P. R. Pietzuch and J. Bacon. Hermes: A distributed event-
based middleware architecture. In Proceedings of the Work-
shop on Distributed Event Based Systems, 2002.

[16] L. Popa, 2005. Private Communication.
[17] C. Raiciu and D. S. Rosenblum. Enabling confidentiality in

content-based publish/subscribe infrastructures. Technical
report, University College London, 2005.

[18] S. Ramanathan. Multicast tree generation in networks with
asymmetric links. IEEE/ACM Trans. Netw., 4(4), 1996.

[19] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu. Opendht: A public dht
service and its uses. SIGCOMM Comput. Commun. Rev.,
35(4), 2005.

[20] J. Risson and T. Moors. Survey of research methods towards
robust peer-to-peer networks: Search methods. Technical
report, University of New South Wales, 2004.

[21] C. Tang, Z. Xu, and M. Mahalingam. psearch: Information
retrieval in structured overlays. SIGCOMM Comput. Com-
mun. Rev., 33(1), 2003.

[22] Y.-M. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and
H. J. Wang. Subscription partitioning and routing in content-
based publish/subscribe networks. In Proceeding of Interna-
tional Symposium on DIStributed Computing, 2002.

