
Using Routing and Tunneling to Combat DoS Attacks
Adam Greenhalgh, Mark Handley, Felipe Huici

Dept. of Computer Science
University College London

Gower Street, London, WC1E 6BT
[a.greenhalgh|m.handley|f.huici]@cs.ucl.ac.uk

Abstract

Thorough defense against DoS attacks is extremely diffi-
cult without incurring significant changes to the Internet
architecture. We present a series of changes aimed at es-
tablishing protection boundaries to reduce the effective-
ness of most flooding DoS attacks against servers. Only
minimal and local changes are required to current net-
work architectures. We show that our scheme is highly
beneficial even if deployed at a single ISP, with addi-
tional benefits arising from multiple-ISP deployment.
Finally, we show that the changes can be implemented
with off-the-shelf components.

1 Introduction
Denial-of-Service (DoS) attacks have become a serious
threat to the future potential of the Internet. If the Inter-
net is to become critical infrastructure, as advocated by
Internet telephony and digital convergence proponents,
then it must be robust to attack. This is not to say
that it must be impossible to disrupt Internet systems,
but that the probability of persistent disruption must be
low. In practice, this means deterring attack through le-
gal means, preventing attack by removing attack vectors,
or enabling effective rapid response in face of attack. In
reality, all three of these are likely to be needed.

In previous work[3], we examined possible changes to
the Internet architecture aimed at increasing robustness.
The goal was deliberately radical: to restrict the modes
of operation of the network to those that are actually de-
sired, greatly reducing the potential attack surface. We
proposed separating the IP address space into “client”
and “server” spaces, allowing communication between
the two spaces, but not within each space, and we advo-
cated path-based addresses for clients, rather than glob-
ally unique addresses.

The potential benefits would be significant: source
address spoofing and reflection attacks would be elimi-
nated, and worms would find it much more difficult to
spread. Without spoofed addresses, reactive response
mechanisms could be automated simply and safely.

Unfortunately the proposal required IPv6 to encode
path-based addresses, HIP[7] to provide a stable end-

system binding, and new inter-domain path-encoders
to build path addresses. Peer-to-peer applications pre-
sented additional complexity. Even if there were global
agreement on such an architectural change, implementa-
tion could not happen overnight.

Such practical constraints lead us to wonder how
many of these potential benefits could be obtained with-
out change to the end-systems, and with only minimal
and local changes to the routing infrastructure.

The issue of local change is important. Altruism is
rarely an important guiding principle for ISPs, so any
changes must provide short-term benefits. More cus-
tomers must be attracted, more money must be received
from existing customers, or running costs must be lower
if a change is to be made. Changes to the client-side
of the Internet are likely to require very widespread de-
ployment before benefits are seen by servers, and so
they are unlikely to be deployed. The question then is
whether there is a server-side-first deployment strategy
that leads in the long run to a more robust Internet, has
benefits for early adopters, and incremental benefits as
more adopters come on board.

In this paper we will explore just such a strategy. The
plan we will sketch out does not have all the benefits of
our original architecture; there are, nonetheless, benefits
at each step along the path for the ISPs doing the de-
ployment. Most importantly, the solutions are still very
general, so they do not trade off short-term expediency
against the future ability to evolve the applications run-
ning on the Internet.

2 The Nature of the Problem
DoS attacks can target scarce resources at any layer in
the stack, but in this paper we only address flooding at-
tacks that target the IP and transport layers (e.g. TCP,
UDP, DNS). As such we only present an IP layer solu-
tion rather than using an application layer overlay like
the one presented by [5]. Attacks targeting higher-layer
functionality are still important, but robust applications
are of little use if data cannot reach them. Before exam-
ining solutions though, it is important to step back and
evaluate why this is a hard problem.

[a.greenhalgh|m.handley|f.huici]@cs.ucl.ac.uk

There are a number of factors that complicate the pic-
ture. The simplest DoS attack consists of one host flood-
ing traffic to another. If the recipient cannot keep up due
to CPU, memory, network bandwidth, or other resource
starvation, then the attack is likely to be successful. The
obvious question is: why can’t the recipient simply re-
quest that the traffic stop? The reasons are many and
varied, and shed light on the nature of the problem.

The natural expectation is that an end-system could
say to the network “don’t send me any more traffic from
X”. There are essentially two technical issues: where in
the network this would be enforced, and how to ensure
that this mechanism can only be used legitimately.

In the existing Internet, there are not many places
where such packet filters could be installed. To be ef-
fective, filtering must be installed upstream of any bot-
tleneck on the path to the recipient, and ideally should
be close to the source of the attack. Unfortunately, trac-
ing back the path taken from the attacker to the victim
is not trivial, given that wide-area Internet paths are al-
most always asymmetric. As a result, to automatically
find an appropriate place to install such a filter requires
mechanisms that do not currently exist. Even if such
mechanisms did exist, it is far from obvious what incen-
tive the ISP at the appropriate place for a filter would
have for installing it, since an ISP close to the attacker
is unlikely to have a direct business relationship with the
victim. Finally there is the issue of authenticating that
the request to install such a filter really did come from
the victim. No appropriate authentication infrastructure
currently exists, and without good authentication, any
process that automates the installation of filters may be
exploited as a DoS mechanism in its own right.

All these problems are made worse by Distributed
Denial-of-Service attacks (DDoS), where many hosts
are compromised and flood a victim in unison. With
DDoS it becomes very important that any filters are as
far upstream as possible. The sheer number of filters
that the victim might need to be installed could also be a
problem with existing hardware.

Any automated filter mechanism that installs filters
for a specific {source, destination} pair of IP addresses
will be useless against an attacker that spoofs the source
address of packets. Not only can the attacker simply
change address to avoid existing filters, but he might be
able to spoof a legitimate machine’s source address in
“attack” packets, with the goal of causing a filter to be
installed that prevents legitimate communication.

Recent data[2] from security vendors indicates that
source address spoofing is rarely used today in DDoS
attacks since it is not needed for them to be effective.
Botnets are relatively easy to create, and since there is
no automatic way to silence compromised hosts, there is
little incentive to spoof. In fact, just enough edge-sites

employ ingress filtering on outgoing traffic that a botnet
actually has slightly greater firepower if address spoof-
ing is not used. However if an automatic filtering mecha-
nism were deployed, the prevalence of address spoofing
would no doubt increase significantly. At present, an in-
teresting vicious cycle exists:

1. Attacks do not source address spoof because there
is no automated filtering mechanism.

2. There is relatively little deployment of ingress fil-
tering, because attacks do not source address spoof.

3. There is no automated filtering mechanism because
attacks could source-address spoof to bypass it.

One way to break such a cycle would be to deploy
a mechanism to effectively defend against non-spoofed
DoS attacks, while not being vulnerable to abuse by
spoofed traffic. Such a mechanism would not by itself
defend against spoofed traffic, but it would shift the bal-
ance. There would be more incentive for ingress filter-
ing, although this seems unlikely to ever be ubiquitous.
Most importantly, it opens the door for additional mech-
anisms to be designed that can detect the difference be-
tween spoofed and non-spoofed traffic.

In this paper we sketch out one such solution. It is
not intended to be a panacea, but rather to raise the bar
somewhat, and to do so with off-the-shelf technologies.

2.1 Points of Control
There are two important points in defending against
DoS: the point of detection of an attack, and the point of
control where the effects of an attack can be mitigated.

The process of attack detection is not simple. Some
attacks such as SYN-flooding are easy to detect, at least
at the recipient. Other attacks such as making a large
number of HTTP requests to a web server are harder,
since they require knowledge of what normal traffic
looks like, and the purpose normally served by that traf-
fic. Detection, however, is not the focus of this pa-
per. Products from vendors such as Arbor Networks are
available that can perform this sort of analysis, so we
will assume that a detection infrastructure exists at im-
portant servers.

Our focus is on establishing points of control, once
an attack has been detected. The current Internet has
no real concept of a point of control, beyond what can
be done using traditional firewalls and routing protocols.
Generally firewalls are too close to the victim to be use-
ful against DoS, and destination-based routing does not
provide sufficient discrimination of traffic flows.

The requirement is for a victim to be able to commu-
nicate with a point of control upstream of local bottle-
neck links, and to be able to request instantiation of fil-
ters that prevent hostile traffic reaching its subnet. Such
filters must be installed quickly, without human inter-

vention. In addition, the point of control must be able
to validate the filter request, so filters cannot be installed
maliciously by third parties.

None of this is terribly radical, and what remains is
engineering rather than science. How can the victim
rapidly and reliably discover the existence of a point of
control on the path from the attacker? How can it do this
when there are many thousands of attackers? How can
the point of control validate the filter request?

Our solution answers these questions through seg-
mentation of the address space, careful control of rout-
ing information, and encapsulation. These are the three
key IP-level building blocks we have to work with in the
Internet today.

3 Proposed Solution
Ideally we would like to protect all Internet hosts, but
realistically it is usually servers that present the biggest
target. We propose, consequently, to provide a protected
virtual net for those servers that wish to be better de-
fended. An ISP providing such protection could charge
a premium fee for the service, giving a clear incentive
for deployment. In [10] the author presents a similar ap-
proach that for small DDoS attacks in the context of a
single ISP. Our solution is intended to extend to a net-
work of many collaborating ISPs, but in this section we
first examine how our solution might initially be de-
ployed at a single ISP, before examining options how
multiple ISPs might cooperate.

3.1 Single ISP Architecture
The first step is to designate certain subnets of the IP
address space as server subnets: these will receive ad-
ditional protection from attack. We refer to these sub-
nets collectively as the server-net; conceptually they are
within a protection boundary ringed by control points.
Traffic from the public Internet must traverse one of
these control points on its way into the server-net.

A condition of being a server-net host is not being per-
mitted to send directly to other server-net hosts. This
constraint prevents hosts inside the server-net from at-
tacking other hosts inside the server-net, and prevents
server-net hosts being exploited as relays in reflection
attacks on other server-net hosts. It also helps slow the
spread of worms within the server-net boundary.

The basic functions of a server-net boundary control
point are encapsulation and filtering. At an encapsula-
tor, packets destined for a server are encapsulated IP-
in-IP, and sent to a decapsulator located in the server’s
co-location facility. An ISP must have at least one en-
capsulator, but maximum benefit will be gained with one
encapsulator associated with each PoP or peering link.

The principal advantage of this architecture is that

when a server is attacked, the decapsulator knows pre-
cisely which encapsulators the malicious traffic tra-
versed. As a result, it can ask them to filter traffic,
stopping the attack some distance upstream of the vic-
tim. We note that encapsulation isn’t the only technique
by which this could be achieved. In particular, MPLS
tunneling might also be used for this purpose. How-
ever IP-in-IP encapsulation has advantages over MPLS.
First, the address of the encapsulator can be directly
obtained by the decapsulator, rather than needing addi-
tional mechanisms to reverse map the MPLS labels, but
perhaps more importantly it is much harder to extend an
MPLS solution inter-domain, which is our eventual goal.

Causing incoming traffic, even traffic originating from
within the local ISP, to traverse an encapsulator requires
careful control of routing. Routes to the server-net sub-
nets should only be advertised from the encapsulators
themselves, to ensure that there is no way to bypass them
and send directly to the servers. In addition, the decap-
sulator addresses should be taken from the ISP’s infras-
tructure address space, which (according to best current
practice) should never be advertised outside of the ISP’s
own network. This prevents an attacker directly flooding
a decapsulator associated with a server.

Possible communication paths within this architecture
are illustrated in Figure 1. Flows 1 and 2 show the typ-
ical scenario with packets from a client passing through
an encapsulator, being tunneled to a decapsulator, and
finally arriving at the servers. Flow 3 is client to client
and is unaffected. Flow 4, from one protected server to
another, is disallowed to prevent reflection attacks and
the spread of worms. Finally, flow 5 shows a protected
server choosing to perform decapsulation itself.

Server→client traffic could be sent via the reverse of
the incoming tunnel, or it could be forwarded natively.
Either reverse path for the traffic is feasible with the pro-
posed architecture, it should be an operation decision as
to which is used. Tunneling has the benefit that a smart
encapsulator can view both directions of a flow, allowing
it to monitor and filter traffic more intelligently. How-
ever, this requires forwarding state at the decapsulator
that is set up based on observed incoming traffic, and
this state might be vulnerable to DoS if source address
spoofing is used.

One solution is for the server to switch dynamically
from a native to a tunneled reverse path once a connec-
tion is fully established and is therefore known not to be
spoofed. Traffic with a tunneled reverse path can then be
forwarded from encapsulator to decapsulator with higher
diffserv priority, which might lessen the effect of flood-
ing attacks that spoof source addresses.

The goal of a server-net when deployed at a single
ISP is to allow automated filtering of unwanted traffic at
the ingress point of that ISP. To perform such automated

DCap. DCap.

server subnets

DCap.

DCap.

ECap.

ECap.client

client

ECap.client

3

4

Normal connection Tunnelled connection

Sample communication nnBlocked connection
Key :

1

2

5

ISP

Figure 1: Scenarios for single ISP architecture.

filtering requires a detection infrastructure in place, lo-
cated so that it can monitor traffic to the server. Possible
locations for this would be in the decapsulator, in the
server, or on the path between the two.

Once a flow has been identified as hostile, the decap-
sulator needs to be informed, and it in turn informs the
encapsulator, which installs the appropriate filter. The
use of infrastructure addresses between decapsulator and
encapsulator is the first line of defense against subver-
sion of the filtering capabilities, as it should simply not
be possible for normal Internet hosts to send filtering re-
quests directly to an encapsulator. Behind this first line
of defense, the signaling channel between the decapsu-
lator and the encapsulator should be secured. Simple
nonce exchange may be sufficient to protect against off-
path attacks, given that a compromised router on the path
can already cause DoS. Public-key-based solutions are,
of course, also possible.

The benefits are clearly greatest for large ISPs hosting
server farms and running a large number of encapsula-
tors. Such ISPs will typically have many peering points
with other large ISPs, and these peering points will be
both geographically and topologically distributed. This
traffic from a large distributed attack will be spread
across many encapsulators because it will be entering
the network from many neighboring ISPs, and so it will
be stopped closer to its origin, before it has aggregated
to the point where it can cause serious damage.

Smaller ISPs still benefit because their customers can
control their degree of exposure, but a large enough at-
tack is likely to overwhelm all incoming links. Nothing
an ISP can do by itself will help in such circumstances.

3.2 Inter-ISP communications
The benefits of a server-net increase as ISPs co-operate.
Extending the protection boundary of the server-net to
include the server-nets of co-operating ISPs moves the

control points nearer to the sources of the DoS traffic. As
we extend the protection boundary, distributed attacks
become less concentrated at any particular control point,
since traffic from each attacking host enters the server-
net through its local encapsulator. Traffic that would
previously have traversed the peering link uncontrolled
now traverses the peering link encapsulated, within the
server-net control boundary.

The general idea is that traffic enters the server-net at
the server-net ISP closest to the traffic source, and is then
tunneled from that ISP’s encapsulator directly to a de-
capsulator at the destination ISP border. At the destina-
tion ISP, the traffic is decapsulated and re-encapsulated
to get it to the final decapsulator near to the server. In
principle it would be possible to tunnel direct from the
remote ISP to the server subnet, but this assumes a de-
gree of trust between ISPs that seems unlikely and un-
necessary.

Traffic originating within an immediate neighbor ISP
is forwarded natively to the border of the destination ISP
where it is encapsulated as in the single ISP case.

4 Implementation Details
To achieve DoS resistance for the server-net, we need
careful control over the propagation of routing informa-
tion. We also need appropriate filtering capability, a fil-
ter request channel, and sufficient encapsulation capac-
ity. We will discuss first the single ISP scenario, then
explore the options for extending this to multiple ISPs,
and finish by discussing feedback and encapsulation.

4.1 Single ISP Routing
The basic requirements of routing to implement a server-
net within a single ISP are:

• Server-net addresses must only be advertised to the
rest of the Internet from the encapsulators.

border
router

router

Server Client

ISP Routing Domain

net S not
advertised

ECap E1

ECap E2

DCap D

IGP:
net S
via E2

IGP:
net S
via E1

IBGP: net S
via nexthop D
"servernet"
"do not export"

To rest of world:

EBGP: net S
via nexthop E2

EBGP: net S
via nexthop E1

1

2

3

4

3

4

Figure 2: Route propagation for single ISP server-net

• The encapsulators need to learn which subnets are
in the server-net space, and which decapsulator is
associated with each.

• The addresses used by the encapsulator and decap-
sulator must not be advertised to the outside world.

• A server-net subnet must not be advertised to
server-net hosts on other server-net subnets.

We believe these requirements can be satisfied by current
BGP[9] implementations on current router hardware.

The server-net could be manually configured, but in
a large ISP this will probably be unfeasible. There are
many ways to do this dynamically, but one possible so-
lution is illustrated in Figure 2 and elaborated below.

1. The decapsulator associated with a server-net sub-
net advertises that subnet into I-BGP1. It adver-
tises its decapsulation address as the BGP nexthop
router address. The route is tagged with a spe-
cial BGP server-net community2. The route is also
tagged with the “do not export” community that the
ISP normally uses to indicate internal infrastructure
routes that should not be exported to peers.

2. All border routers in the domain are already config-
ured to not propagate routes to their external peers
that have been tagged with the do not export com-
munity, so server-net routes will not leak to the out-
side world.

3. All encapsulators in the domain receive the server-
net routes, and match on the server-net commu-
nity. They then remove the do not export commu-

1I-BGP: Internal BGP - using BGP to carry routing information
between routers within a domain.

2A community is a locally defined BGP routing tag. The actual
value of community to use can be locally decided by the ISP.

nity and the server-net community from matching
routes, and re-advertise them to external peers with
the nexthop rewritten to be their own address. This
will draw external traffic to the encapsulators.

4. The encapsulators also re-advertise any routes
tagged with the server-net community into their
IGP routing3. IGP routes are generally preferred
over I-BGP routes on the basis of administrative
distance[1], so this will cause traffic from clients
within the ISP’s domain to be drawn to the encap-
sulators rather than directly to the decapsulators.

5. The decapsulator routers also receive routes con-
taining the server-net community that have been ad-
vertised by other decapsulators. The decapsulator
installs a black-hole route for these subnets to pre-
vent server-net to server-net communication.

Using routing in this way should satisfy our require-
ments. It is likely that slightly simpler solutions are pos-
sible if we can add BGP Path Attributes, but this is prob-
ably best done in the light of deployment experience.

4.2 Multiple ISP Routing
To protect its own server subnets, each ISP joining a
multi-ISP server-net first runs the mechanisms described
for a single-ISP server-net. To peer within a multi-ISP
server-net, the following changes are needed:

1. Instead of an encapsulator at the border of the ISP,
as shown in figure 2, a router with both encapsula-
tion and decapsulation capability is used.

2. The encap/decap router does not remove the server-

3IGP: Interior Gateway Protocol - the intra-domain routing within
an ISP, typically OSPF or IS-IS.

Server

IBGP: net S
via nexthop D
"servernet"
"do not export"

DCap D1

border
router

border
router

ECap E4

EBGP: net S
via nexthop E4

ISP 1 ISP 2 ISP 3

net S

to rest of world

Clients C2 Clients C3

to rest of world
and Clients C4

ECap

DCap IBGP: net S
via nexthop R2
"servernet"
"servernet−transit"
"do not export"

R1

IGP:
net S
via R1

IBGP: net S
via nexthop R1
"servernet"
"servernet−transit"
"do not export"

ECap E2

ECap E3

EBGP: net S
via nexthop E3

Figure 3: Route propagation for multi-ISP server-net

net and do not export communities when transmit-
ting the route to a cooperating neighboring ISP4.

If the number of server subnets in the multi-ISP server-
net were small, then the neighboring ISP can do exactly
as described in the single ISP solution. However, in a
large server-net, the number of server subnets is likely
to exceed the number of routes that can be safely redis-
tributed into the IGP. In addition, even cooperating ISPs
are likely to be wary of providing another ISP with a way
to inject routes into their IGP. Thus we need to modify
the mechanism a little, as shown in figure 3.

On receipt at the neighboring ISP, the border router
will match on the server-net community, and add an
additional server-net-transit community to these routes,
distinguishing them from locally originated server-net
routes. Routes with this additional community will not
be redistributed into the IGP routing by encapsulators.

The result is that traffic from clients within the neigh-
boring ISP’s network (C2 in Figure 3) will reach the first
encapsulator in the destination ISP using native forward-
ing. On the other hand, traffic from clients that would
transit the neighboring ISP (C4 in Figure 3) will be en-
capsulated by the neighboring ISP’s encapsulator and
tunneled to the decapsulator at the destination ISP, be-
fore being immediately re-encapsulated and sent on to
the destination server subnet’s decapsulator.

Where more than two ISPs peer within a server-net,
routes distributed onward to other server-net ISPs are
sent with the BGP nexthop unchanged. Thus traffic will
only ever be encapsulated and decapsulated twice:

• Encapsulated at the first encapsulator in the nearest
server-net domain to the client.

4This assumes that both ISPs use the same community values to in-
dicate the server-net and do-not-export. If not, it will have to translate
to the neighboring ISPs values.

• Decapsulated and immediately re-encapsulated at
the first encapsulator in the destination ISP.

• Decapsulated at the destination subnet.

There is one issue remaining with regards to figure 3.
There is no guarantee that traffic from clients C3 will
traverse encapsulator E2 on its way to R1, and hence be
encapsulated. To ensure this does happen requires con-
trolling the inter-domain distribution of routes for R1.
In fact the requirement is that routes for such decapsula-
tors only transit between ISPs at the same peerings that
server-net routes transit. A very similar use of an addi-
tional community tag can be made to preserve this con-
gruence. The principal difference is that such routes are
never propagated outside the server-net boundary.

4.3 Encapsulation and Filtering
IP-in-IP encapsulation is a standard feature on most
routers. Juniper Networks ship a hardware tunnel inter-
face module[4] capable of encapsulation at 10Gb/s that
supports 8,000 tunnel virtual interfaces; other vendors
no doubt have similar products. Thus current hardware
is capable of performing fast tunneling to enough desti-
nations to satisfy even large server-nets.

Most backbone routers also support packet filtering
capability. It seems likely that they support sufficient
filter rules to cope with attacks on the scales currently
seen. In a multi-ISP server-net, any one attack is spread
across many encapsulators, making it even harder for an
attacker to saturate the filtering capability.

A cheaper solution is to use PC hardware. 400 Mb/s
forwarding was possible in 2000[6] with minimum sized
packets, limited largely by the PCI bus. A modern PC
with PCI-Express is likely to be capable of in excess of
1 Gb/s with a very large number of hashed filter rules.

No standard exists for automated pushback of filters,
but one would likely emerge if server-nets were widely

deployed. In the meantime, a signaling channel would
have to work around what is currently available.

Bro[8] can enable filter rules via the command line
interface of Cisco routers. This is clunky, but works. In
a similar manner, a server-net could use buddy-hosts co-
located with each encapsulator. A buddy host would val-
idate that a filter request came from the correct server-net
decapsulator address by checking the BGP routing table,
and then performing a handshake to prevent spoofing. It
would install the filter rule in its local encapsulator using
the command line interface. In the long run, we expect
routers would directly support such a signaling channel.

The minimum filter granularity would likely be
{source address, destination prefix} to prevent the tar-
geting of other hosts on a victim’s subnet. Also possible
is {source prefix, destination prefix} to avoid an attacker
spoofing multiple hosts on the same source subnet.

5 Future Work
Our initial plans are to work with ISPs to evaluate the
feasibility of deploying a trial server-net in the wild.
Based on this as well as any problems experienced, we
will investigate whether it is worth standardizing addi-
tional BGP Path Attributes to simplify deployment.

A server-net neutralizes whole classes of attack, and
attackers will adapt. Attacks requiring a full connec-
tion will have to become more subtle to avoid detection,
and brute-force attacks will need to employ spoofing.
To provide full protection, a server-net clearly needs to
tackle spoofing; in the short term, servers might signal
encapsulators to prioritize bidirectional flows.

In the longer term, server-net control points might be
enhanced to validate source addresses. A stateful con-
trol point could perform a nonce-exchange with a source
before allowing packets downstream. More specifically,
in response to a data packet, a control point might send
an ICMP nonce packet back to the source. The source
would then need to echo the nonce in the data packet
to allow the packet to pass and to instantiate state. For
IPv6, the nonce could be carried in a data packet using a
destination option. For IPv4, this is harder, as IP options
are virtually useless. However, the IPSEC authentica-
tion header might be generalized into a form similar to
the IPv6 destination option. Although such extensions
are a long-term proposal, there might be incentive for
deployment: a server-net under attack would give much
higher priority to connection setup packets that were re-
sent with the correct nonce echo.

6 Conclusions
A server-net is a protected region of the Internet that can
provide upstream filtering capability for servers under
DoS attack. We have sketched out how to build such
a capability using current off-the-shelf router hardware

and software components. The scheme we presented
provides a workable solution using tunneling and careful
control of routing to provide points of control in the net-
work; filters may then be installed at these points to drop
DoS traffic close to its source. Further work is needed
to test real deployment of the scheme at ISPs, to under-
stand the economics of deployment, and to limit source
address spoofing.

This work is not intended to be a complete solution
to DoS attacks in the Internet. It only protects servers,
and only those that do not need to communicate fre-
quently with other similarly-protected servers. In its
current form, it only protects against non-spoofed at-
tacks. However, this is still a significant improvement
over unprotected directly-connected servers, especially
when defending against attacks on higher-level function-
ality which cannot be spoofed because they require a full
TCP connection to be setup. More complete solutions
are likely to require significant architectural change to
the Internet, and so will take very much longer to come
to consensus and deploy.

References
[1] Cisco Systems. What is administrative distance?

http://www.cisco.com/warp/public/105/admin distance.html.
[2] Communications Innovation Institute. Summary of

the initial meeting of the DoS-resistant Internet work-
ing group. http://www.thecii.org/dos-resistant/meeting-
1/summary.html, January 2005.

[3] Mark Handley and Adam Greenhalgh. Steps towards a
DoS-resistant Internet architecture. In Workshop on Fu-
ture Directions in Network Architecture (FDNA 2004).
ACM SIGCOMM, September 2004.

[4] Juniper Networks. Tunnel services PIC datasheet.
http://www.juniper.net/products/modules/tunnel pic.html.

[5] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure
Overlay Services. In Proceedings of ACM SIGCOMM,
August 2002.

[6] E. Kohler, Robert Morris, Benjie Chen, John Jannotti,
and M. Frans Kaashoek. The Click modular router.
ACM Trans. on Computer Systems, 18(3):263–297, Au-
gust 2000.

[7] R. Moskowitz, P. Nikander, and P. Jokela. Host Identity
Protocol. draft-moskowitz-hip-09.txt, work-in-progress,
IETF, February 2004.

[8] Vern Paxson. Bro: A system for detecting network in-
truders in real-time. In Computer Networks, 31(23-24),
pages 2435–2463, December 1999.

[9] Y. Rekther and T. Li. A border gateway protocol (BGP-
4). http://www.ietf.org/rfc/rfc1771.txt, March 1995.

[10] R. Stone. CenterTrack: An IP overlay network for track-
ing DoS floods. In Proceedings of the 9th USENIX Secu-
rity Symposium, August 2000.

	Introduction
	The Nature of the Problem
	Points of Control

	Proposed Solution
	Single ISP Architecture
	Inter-ISP communications

	Implementation Details
	Single ISP Routing
	Multiple ISP Routing
	Encapsulation and Filtering

	Future Work
	Conclusions

