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ABSTRACT
We present TFWC, a TCP-friendly window-based conges-
tion control mechanism for real-time multimedia streaming
applications. Although TFRC is regarded as a de facto stan-
dard for those types of applications, under low stat-mux con-
ditions fairness can be an issue. We re-introduce a TCP-like
ACK mechanism while retaining the TCP throughput equa-
tion to compute the sending rate. We show that our pro-
posed protocol is fairer than TFRC when competing with
TCP flows under certain circumstances.

1. INTRODUCTION
The rapid growth of consumer broadband is driving a sig-

nificant increase in the use of multimedia applications. The
variability of TCP’s AIMD congestion control and its abso-
lute reliability are far from ideal for these real-time applica-
tions so, where possible, they use UDP. A number of conges-
tion control protocols have been proposed [1, 2, 3]. Among
them, TCP-Friendly Rate-based Control (TFRC) [4] has
emerged as a mechanism to provide smooth and predictable
throughput for such applications. Recently, Datagram Con-
gestion Control Protocol (DCCP) [7] adopted TFRC as a
means to minimize abrupt changes in the sending rate.

Unfortunately, we observed that if a flow traverses a low
statistically multiplexed network link (such as DSL provides)
with drop-tail queuing, TFRC traffic can starve TCP traf-
fic. Although, on average, TFRC and TCP respond simi-
larly to loss, TFRC lacks the fine-grain congestionavoid-
ance mechanism that TCP’s ack-clocking provides, mean-
ing that TFRC can briefly overshoot the available link ca-
pacity. This fills the buffer at the bottleneck link and causes
TCP’s ack-clock to actually reduce the sending rate. TFRC
can also cause oscillatory behavior by itself due to this over-
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shoot; for this reason TFRC builds in a short-term mecha-
nism to reduce the transmission rate as the RTT increases.
This mechanism however has a little lag which reduces its
effectiveness, and while it helps significantly, it also reduces
the smoothness that was the motivation for being rate-based.

Bansal and Floyd [5] observed related problems when the
available capacity changes abruptly, and introduced a con-
servative mode to TFRC, whereby the sender is limited by
the measured arrival rate at the receiver. In simulation, this
works well to mitigate many problems, but accurately mea-
suring the received rate (and indeed finely controlling the
sending rate) inreal systems is problematic. Saurin [6]
discovered that even the non-conservative TFRC’s limiter
(which is bounded to twice the receive rate) cuts in inappro-
priately on real networks. Given these issues, perhaps we
should simply use a congestion window in the first place?

Our main contribution is to re-introduce TCP’s ack-clocking
feature for limiting unacknowledged packets, while still pro-
viding equation-based characteristics similar to TFRC. By
introducing the ack mechanism, we calculate sending rate
based on a window size. Our protocol is noticeably fairer
than TFRC when sharing lower-speed network links.

2. TFWC
TCP-Friendly Window-based Control (TFWC) uses the

same TCP throughput equation [3] used by TFRC, but whereas
TFRC uses the calculated sending rate in a rate-based con-
troller, TFWC uses TCP-like ack-clocked window-based con-
trol. A TFWC sender computes the congestion window (cwnd)
to determine its sending rate using the same equation. Like
TFRC, TFWC does not retransmit lost packets as it is in-
tended for streaming multimedia applications.

From a simplified TCP throughput equation introduced in
[3], we can derive the window of packets we are allowed to
send. The idea is to multiplytRTT /s to both side of equa-
tion and get the number of bytes for the use of a newcwnd
calculation. Thus,
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whereW is the window size in packets andp is the packet
loss probability (more precisely loss event rate).



A TFWC sender behaves just like a TCP senderuntil the
first lost packet is reported. From this point on, upon receipt
on each ack, TFWC will compute the average loss interval to
get the loss event rate. Feeding this loss event rate into Equa-
tion (1), we can calculate the newcwnd size. If the sequence
number of new data waiting to be sent satisfies equation (2)
then it can now be sent, resulting in an ack-clock.

Seqno of New Data ≤ cwnd + Unacked Seqno (2)

Every time an ACK message comes into the TFWC sender,
it will update the round-trip time and the “retransmit” time-
out value. With the calculated timeout value, the “retrans-
mission” timer is set every time a new packet is sent. If the
timer expires, the next available packet (not in fact a retrans-
mission) is sent, and the timer is restarted with double the
previous timeout value.

3. SIMULATION RESULTS
We implemented TFWC inns [9]; the results here use a

dumbbell topology. We vary the number of sources from 1 to
100 and used the same number of competing TCP and TFRC
sources and similarly competing TCP and TFWC sources.
The bottleneck bandwidth varies from 0.1 Mb/s to 20 Mb/s
with a 10ms RTT delay, and the access link delay was chosen
randomly between0.2 ms to2.0 ms. There are reverse path
TCP traffic in the simulation in order to break simulation
phase effects and exacerbate any issues due to TFWC ack-
compression. The drop-tail buffer size at the bottleneck was
set to a delay-bandwidth product to allow TCP to perform
correctly. In this scenario, the approximate average round-
trip time is 12ms - a fairly typical DSL RTT to the local ISP.
We draw the protocol fairness graphs as follows. Let the
protocol fairness indicatorθ be:

θ =

∑

(TCP Rate)
∑

( TCP Rate + TFWC Rate)
(3)

If θ is 0.5, then it indicates TCP perfectly shares the link
with TFWC (or TFRC). Asθ approaches to 1, TFWC (or
TFRC) traffic is starved by TCP traffic.

Figure 1 shows the protocol fairness for (a) TFRC vs
TCP and (b) TFWC vs TCP. Thex-axis shows the bottleneck
bandwidth, and hey-axis gives the number of flows sharing
the bottleneck, and thez-axis stands for the fairness indi-
cator (θ). The TFRC protocol fairness is largely dependent
upon the bottleneck bandwidth. If the bottleneck bandwidth
is less than 1 Mb/s, then we can hardly say the TFRC is
fair with TCP traffic no matter what the number of sources:
θ ∼= 0.1. Note that the one flow case also shows little bit of
unfairness. TFWC does significantly better. However if the
bottleneck bandwidth is large (e.g., over 5 Mb/s), then both
TFWC and TFRC are reasonably fair.

4. CONCLUSION
In this paper, we introduced TCP-Friendly Window-based

Control (TFWC), a simple but novel congestion control mech-
anism for streaming media applications. TFWC outperforms
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(a) Fairness (TCP and TFRC)
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Figure 1: Fairness Comparison, tRTT
∼= 12 ms

TFRC in that it provided fairer network resource share over
ns-2 simulation, especially under DSL-like environments that
most many multimedia users are likely to use. Future work
includes an implementation and evaluation in a real-world
environment using real applications.
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