
Internet Congestion Control Research Group

Mark Handley UCL



#### **Congestion Control**

■ The Internet only functions because TCP's congestion control does an effective job of matching traffic demand to available capacity.



Time (RTTs)



# But my network doesn't have congestion!

- Maybe.
- But the end-to-end path should if we've done our job right.
- File transfer:
  - $\square$  Move x bytes from a to b in time t.
  - $\square$  Applications work better as  $t \rightarrow 0$
- Realistically, t will never be zero, but our long term goal should be to make it as close to one RTT as possible.



# **Limitations of AIMD Congestion Control**

(Additive Increase, Multiplicative Decrease)

Very variable transmit rate is fine for bulk-transfer, but hard for real-time traffic.

RFC3448: TCP-Friendly Rate Control (TFRC)

RFC????: Datagram Congestion Control Protocol (DCCP)

# M

# **Limitations of AIMD Congestion Control**

- Failure to distinguish congestion loss from corruption loss.
  - □ Wireless
- Limited dynamic range.

transmit rate 
$$\sim = \frac{\text{packet size}}{\text{RTT}\sqrt{\text{loss rate}}}$$

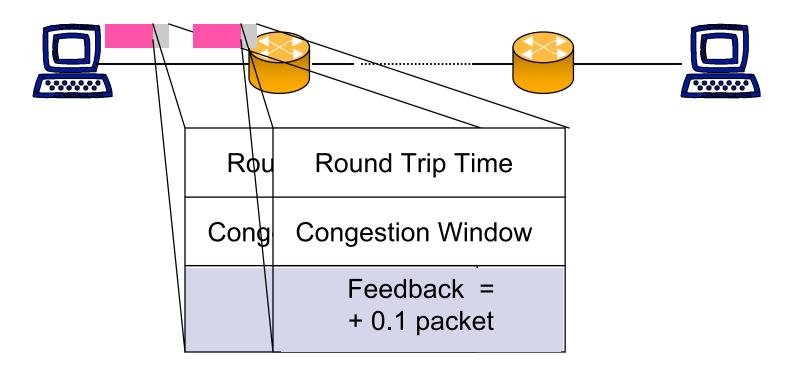


### AIMD: Limited Dynamic Range

One loss every half hour, 200ms RTT, 1500bytes/pkt.

- ⇒ 9000 RTTs increase between losses.
- ⇒ peak window size = 18000 pkts.
- ⇒ mean window size = 12000 pkts.
- ⇒ 18MByte/RTT
- $\Rightarrow$  720Mbit/s.
- ⇒ Needs a bit-error rate of better than 1 in 10<sup>12</sup>.
- → Takes a very long time to converge or recover from a burst of loss.



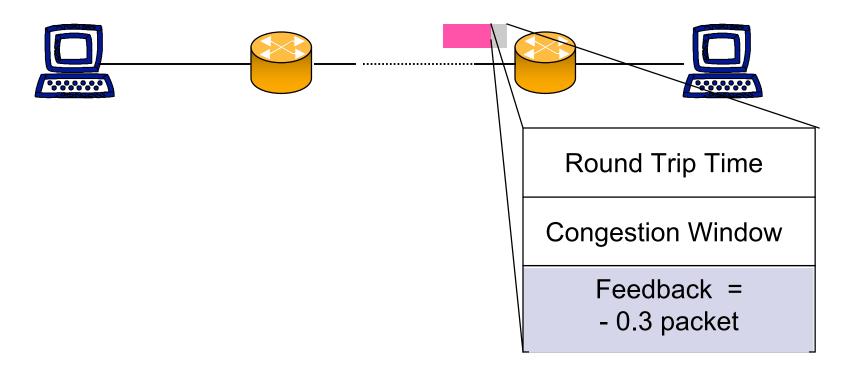

### **Opportunity**

- We will need to change the congestion control dynamics of the Internet.
- This presents an opportunity to do it right and solve many additional problems at the same time.
  - □ Wireless?
  - Smooth throughput for multimedia?
  - □ Low delay service?
  - □ DoS resistant?
- Always easier to solve only the immediate problem.



#### XCP: eXplicit Control Protocol

Katabi, Handley, Rohrs, Sigcomm 2002




Congestion Header



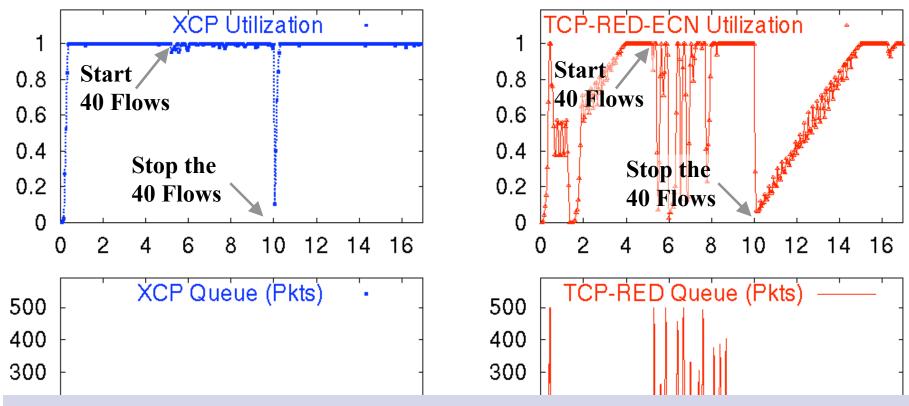
# XCP: eXplicit Control Protocol

Katabi, Handley, Rohrs, Sigcomm 2002





#### XCP: eXplicit Control Protocol


Katabi, Handley, Rohrs, Sigcomm 2002



Congestion Window = Congestion Window + Feedback

Routers compute feedback without any per-flow state





XCP responds quickly to change, gives smooth throughput, low delay, and low loss.

Time (seconds)

Time (seconds)



# So why isn't everyone doing it?

- XCP was intended as a blue-sky idea to see what was possible.
  - Needs all the routers on the path to play.
  - □ Lots of bits in packet headers.
  - □ A couple of multiplies and a few adds per packet.
- Need phase 2: Can we make it economically viable?
  - □ Reduce costs without destroying benefits.
  - □ Enable incremental benefit with incremental deployment.



# Plenty of Ideas

- High-speed TCP (S. Floyd)
- Scalable TCP (T. Kelly)
- FAST (S. Low)
- H-TCP (D. Leith)
- Bic-TCP (I. Rhee)

- XCP (Katabi)
- Re-feedback (Briscoe)
- VCP (Xia, Subramanian)
- Work on router buffer sizing (Appenzeller, McKeown, Wischik)
- Need a forum for evaluation and consensus that includes both researchers and equipment vendors.
  - ☐ IETF is not terribly good at this.

# M

#### Internet Congestion Control Research Group

- Forum for discussion and evaluation of existing congestion control ideas, with the goal of reaching a consensus on how to move forward.
  - □ Researchers, vendors, operators needed to be successful.
- Influence the long-term plans of the IETF.
- Proposed charter:
  - http://nrg.cs.ucl.ac.uk/mjh/iccrg
- Mailing list:
  - http://oakham.cs.ucl.ac.uk/mailman/listinfo/iccrg