
TCP Theory

Mark Handley

Professor of Networked Systems

UCL Computer Science Dept.

What is TCP?

 Transmission Control Protocol
 Standardized in 1981 in RFC 793
 Tweaked endlessly ever since.

 Provides a reliable bytestream abstraction end-to-end across
an unreliable packet network.

 Transfers the vast majority of the traffic in the Internet.
 Email, ftp, WWW, ssh, telnet, Kazaa, BGP routing,

X windows, and many others are all built on top of TCP.

TCP/IP

 IP handles addressing (and some other stuff).

 Routers look at the IP headers to move packets from sender
A to receiver B.

 Sometimes the routers will break, or get congested, or
re-route your traffic over a piece of wet string, and then
they’ll drop packets.

 TCP packets are carried in IP packets.

 The routers don’t look at TCP.

TCP/IP File to be sent

File received

So what can go wrong?

 Packets can get corrupted.

 Packets can get lost.

 Packets can get delayed.

 Packets can arrive in a different order than the order in which
they were sent.

 Sender tries to send faster than receiver can receive.

 End systems try to send more than the available network
capacity.

So what can go wrong?

 Packets can get corrupted.
 TCP checksum discards bad packets.
 But beware: it’s not very strong!

 Packets can get lost.
 TCP will retransmit.

 Packets can get delayed.
 TCP uses adaptive timers to try and avoid retransmitting

unnecessarily.
 Get this wrong, and you have congestion collapse.

So what can go wrong?

 Packets can arrive in a different order than the order in which
they were sent.
 TCP uses sequence numbers to restore original order

 But most implementations will perform badly with a lot of
reordering: treat this as signal of loss (congestion).

 Can be a big problem if you want to do load balancing.

So what can go wrong?

 Sender trys to send faster than receiver can receive.
 A TCP receiver continuously signals to the TCP sender

how much receiver buffer space is available.
 Sender never sends more than the receiver can store.

 End systems try to send more than the available network
capacity.
 TCP does end-to-end congestion control.

TCP Congestion Control

Congestion Control

End-to-end congestion control serves several purposes:

 Divides bandwidth between network flows in a "reasonably
fair" manner without requiring per-flow scheduling by
routers.

 Prevents congestion collapse of the network by matching
demand to supply to ensure overall goodput remains
reasonably high.

Congestion Collapse

Congestion collapse occurs when the network is increasingly
busy, but little useful work is getting done.

Problem: Classical congestion collapse:

Paths clogged with unnecessarily-retransmitted packets
[Nagle 84].

Fix:

Modern TCP retransmit timer and congestion control
algorithms [Jacobson 88].

Congestion collapse from undelivered packets

Problem: Paths clogged with packets that are discarded before
they reach the receiver [Floyd and Fall, 1999].

Fix: Either end-to-end congestion control, or a ``virtual-circuit''
style of guarantee that packets that enter the network will be
delivered to the receiver.

Congestion Control

Since 1988, the Internet has remained functional despite
exponential growth, routers that are sometimes buggy or
misconfigured, rapidly changing applications and usage patterns,
and flash crowds.

This is largely because most applications use TCP, and TCP
implements end-to-end congestion control.

TCP Congestion Control

 TCP is ack-clocked.
 When an Acknowledgement arrives back at the sender, it

indicates a packet has left the network.
 The sender can then send another packet.

 TCP does this by keeping a window of the packets currently in
the network.
 This is inherently stable: can only send as quickly as

packets can get through the bottleneck link.
 Should something go wrong, and a queue start increasing,

TCP’s constant window will cause the transmission rate to
decrease.

TCP Adaptive Congestion Control

Basic behaviour: Additive Increase, Multiplicative Decrease.
 Maintain a window of the packets in flight:

 Each round-trip time, increase that window by one packet.
 If a packet is lost, halve the window.

TCP’s
Window

Time (RTTs)

TCP Fairness

x+y = l+qmax
(queue overflows)

x = y (fairness)

Flow y’s
window

Flow x’s
window

Queue

Flow x

Flow y

TCP (Details)

 TCP congestion control uses AIMD:

 Increase the congestion window by one packet every
round-trip time (RTT) that no packet is lost.

 Decrease the congestion window by half every RTT that a
packet loss occurs.

 In heavy congestion, when a retransmitted packet is itself
dropped or when there aren't enough packets to run an ACK-
clock, use a retransmit timer, which is exponential backed off
if repeated losses occur.

 Slow-start: start by doubling the congestion window every
roundtrip time.

The model: Packet size B bytes, round-trip time R secs, no queue.
 A packet is dropped each time the window reaches W packets.
 TCP’s congestion window:

 The maximum sending rate in packets per roundtrip time: W
 The maximum sending rate in bytes/sec: W B / R
 The average sending rate T: T = (3/4)W B / R

 The packet drop rate p:

 The result:

TCP Modelling: The "Steady State" Model

An Improved "Steady State" Model

A pretty good improved model of TCP Reno, including timeouts,
from Padhye et al, Sigcomm 1998:

Verifying the Models

TCP Variants

 Four mainstream TCP variants

 TCP Tahoe

 TCP Reno

 TCP NewReno

 TCP Sack

 Tahoe and Reno are obsolete.

 NewReno and Sack are current.

 Sack sends selective acknowledgements, so much more
robust to multiple losses in one window of data.

TCP and Network Queuing

Queuing

 The primary purpose of a queue in an IP router is to smooth
out bursty arrivals, so that the network utilization can be high.

 But queues add delay and cause jitter.

 Understanding and controlling network queues is key to
getting good performance.

TCP Throughput and Queue Size

Time (RTTs)

W
in

do
w

 (P
ac

ke
ts)

TCP and Queues

 TCP needs one delay-bandwidth product of buffer space at the
bottleneck link for a TCP flow to fill the link and achieve 100%
utilization.

 Thus, when everything is configured correctly, the peak delay
is twice the underlying network delay.

 Links are often overbuffered, because the actual RTT is
unknown to the link operator.

 Increased RTT => slower convergence.

Two TCP Flows (Effects of Phase)

Multiple TCP flows and Queues

 If multiple flows all back-off in phase, the router still
needs a delay-bandwidth product of buffering.

 If multiple flows back-off out of phase, high
utilization can be maintained with smaller queues.

How to keep the flows out of phase?

Active Queue Management

Goals of Active Queue Management

 The primary goal: Controlling average queuing delay, while
still maintaining high link utilization.

 Secondary goals:
 Improving fairness (e.g., by reducing biases against bursty

low-bandwidth flows).
 Reducing unnecessary packet drops.
 Reducing global synchronization (i.e., for environments

with small-scale statistical multiplexing).
 Accommodating transient congestion (lasting less than a

round-trip time).

Random Early Detection (RED)

 As queue builds up, randomly drop or mark packets with
increasing probability (before queue gets full).

 Advantages:

 Lower average queuing delay.

 Avoids penalizing streams with large bursts.

 Desynchronizes co-existing flows.

RED Algorithm
for each packet arrival

calculate the new average queue size qavg

if minth < qavg < maxth

calculate probability pa

with probability pa:
mark/drop the arriving packet

else if maxth > qavg
drop the arriving packet

Variables:
qavg : average queue size
pa : packet marking or

dropping probability

Parameters:
minth : minimum threshold for

queue
maxth : maximum threshold for

queue

RED Drop Probabilities

D
ro

p
Pr

ob
ab

ilit
y

Average Queue
Size

1

min th

max th

max p

0

The argument for using the average
queue size in AQM

To be robust against transient bursts:
When there is a transient burst, to drop just enough

packets for end-to-end congestion control to come
into play.

To avoid biases against bursty low-bandwidth
flows.

To avoid unnecessary packet drops from the
transient burst of a TCP connection slow-starting.

The problem with RED

 Parameter sensitivity
 How to set minth, maxth and maxp?

 Goal is to maintain mean queue size below the midpoint
between minth and maxth in times of normal congestion.
 maxth needs to be significantly below the maximum queue

size, because short-term transients peak well above the
average.

 maxp primarily determines the drop rate. Needs to be
significantly higher than the drop rate rfequired to keep the
flows under control.

 In reality it’s hard to set the parameters robustly, even if you
know what you’re doing.

RED Drop Probabilities (Gentle Mode)

D
ro

p
Pr

ob
ab

ilit
y

Average Queue
Size

1

min th

max th

max p

0
2*

max th

Other AQM schemes.

 Adaptive RED (ARED)

 Proportional Integral (PI)

 Virtual Queue (VQ)

 Random Exponential Marking (REM)

 Dynamic-RED (DRED)

 Blue

 Many other variants... (a lot of PhDs in this area!)

Explicit Congestion Notification

Explicit Congestion Notification (ECN)

 Standard TCP:
 Losses needed to detect congestion
 Wasteful and unnecessary

 ECN:
 Routers mark packets instead of dropping them.
 Receiver returns marks to sender in ACK packets.
 Sender adjusts it’s window as it would have done if the

packet had been dropped.
 Advantages:

 Bandwidth up to bottleneck not wasted.
 No delay imposed by retransmission.

TCP Summary

 TCP performs a number of roles.
 Need to get everything right to work well.

 Adaptive congestion control is critical.
 Even if you think you don’t need it, when something breaks

you’ll be glad it’s there.
 Interaction between TCP and Queuing is important.
 TCP response function isn’t set in stone.

 A lot of current research as to how to do better with high
delay-bandwidth products.

 No clear consensus on how to agree what the future of
congestion control is.

