tcperypt

Mark Handley

What would it take to encrypt all
the traffic on the Internet, by
default, all the time?

Crypto 10]: Encryption without
authentication is useless.

m Encryption without authentication is like meeting a
stranger in a dark alley.

o Whatever happens, there will be no witnesses.

tcperypt:
Opportunistic Encryption of TCP Flows

m Public key exchange in TCP handshake.
m Generate shared secret.

m Use shared secret to bootstrap encryption and MAC of
TCP packets.

m Use shared secret to allow session rekeying, lightweight
setup of additional sessions and session resumption
from different IP addresses.

50, you like hanging about in dark
alleys then!?

m Did you close the curtains in your hotel room last night?

What use opportunistic encryption!?

m Changes the balance of power.

o Easy for a passive eavesdropper to listen to all of your
traffic.

o Active interception is a lot harder, and is inherently
detectable.

So you support terrorists and child porn then!?

m 50 you su
m 50 you su
m 50 you su
m 50 you su

m 50 you su

D
D
D
D

D

bort identify theft!
bort phishing?
bort rate limiting of bittorrent traffic?

bort the great firewall of China?

bort government repression of freedom of

speech In <insert repressive regime of the moment>/

What about lawful intercept!?

m \VWhose laws?

Are we having fun yet?

What about lawful intercept!?

m Opportunistic encryption prevents passive
eavesdropping but Is no obstacle to targetted active
interception.

o Can be man-in-the-middle.
o Can simply downgrade to regular TCP.

OK, so much for the politics...

m \What about the technical issues?

Architecture

m VWhy push a weak crypto solution?
o Because 1t isn't weak.

o It's just the building block upon which you build more
bowerful solutions.

Architecture

m [Encryption Is generic.

o Don't need to know about the semantics of the data to keep
it secret.

m Authentication is application specific.
o Who do | trust?
o Who is authenticating whom!?
o What identity am | authenticating!
o How do | bootstrap identity?

Assertions

m With the right encryption building block, we can support
a wide range of authentication schemes.

m VWe can make 1t go fast enough to be on by default.

Mechanism PKCONF - syn ack
%

v encryption start \J

In TCP handshake, negotiate tcpcrypt:

m C— S:HELLO

m S = C: PKCONF, pub-cipher-list

m C — S:INIT1, sym-cipher-list, NC, KC

x S — C: INIT2, sym-cipher, ENCRYPT(KC , NS)

Mechanism (2)

Generate shared secret:

ss[0] « HMAC (NS, {KC , NC , cipher-lists, sym-cipher})

From ssJi], use HMAC(ssJi], x) for various constants X to generate
encryption and authentication keys for each direction.

Note: KC is ephemeral: not stored to disk and regenerated
frequently. Provides forward secrecy.

Mechanism (3)

m Subsequent connections can bootstrap using the shared
secrets without doing public key operations:

ss[i] « HMAC(ssli — 1], TAG_NEXT_KEY)

NEXTK] - syn

NEXTK2 - syn ack

N N I I

encryption start

\ck—.

\J \J

_M’

PKCONF - syn ack

Embedding it in TCP ——NIT1 0 |

‘W

m HELLO and PKCONF fit in tcp optic ¥ encryption start ¥
SYN/ACK.

m [NIT| and INIT2 are too big for options.

o Hijack the payload of first two data segments, as app
can't have sent any data yet.

m Subsequent packets:
o All include MAC option and payload Is encrypted.

Authentication

tcperypt generates a session |D from crypto at both ends:
sid[i] < HMAC(ss]i], TAG_SESSION_ID)

m Session D is available by getsockopt.

m Guaranteed to be the same at both ends iff there is no
man In the middle.

SSL-equivalent security

m Server can just sign the session |ID using an SSL
certificate.

o Identical security to SSL, but also protects the TCP
session from reset attacks, etc.

m Session ID i1s not a secret.

o Can sign a batch of session IDs and send the batch
and sig to many clients. Big speedup!

Mutual authentication using passwords

m h =H (salt, realm, password)
m C— S:HMAC(h, TAG_CLIENT Il Session_ID)
m S — C:HMAC(h, TAG_SERVER Il Session_ID)

m Server knows that client knows the password.
m Client knows that server also knew the password.
o Proper mutual authentication.

m No more phishing attacks?

o You know If you're talking directly to your bank or not
because you know that they know your password.

Authentication

m Many different authentication schemes enabled by the
session |ID concept.

Performance

m Can be smart about using crypto.

o Eg. single core can perform 12,243 encryptions/sec
with a 2,048-bit RSA-3 key, but only 97/
decryptions/sec

Get the client to decrypt, server encrypts.

Implementation

m Andrea implemented tcpcrypt using a divert socket to a
userland daemon.

o Runs on Linux, FreeBSD, MacQOS, etc.

m Not optimal performance (too many copies).
m No kernel changes needed.
m Can even run in a NAT!

Performance (Connecton Setup)

Connection rate (conn/s)

Protocol Native Divert
TCP server 98,434 61,515
tcperypt server (cached) 38,832
tcperypt server (uncached) 21,908
SSL server (cached) 39,785 27,348
SSL server (uncached) 754 743
tcperypt client (uncached) 749

Performance (Encryption)

Transfer Throughput (Mb/s)
Protocol Native Divert
TCP 12,954 3,357
tcpcrypt AES-SHA 1,752
tcperypt AES-UMAC 1,925
tcpcrypt RC4-UMAC 2,268
SSL AES-SHAI 3,692 1,939

Performance (with strong authentication)

Connections/s

25000

20000

15000

10000

5000

batch sign parameter

| | | | | | |
21,908
- 19417 -
16,438
L EEEE LTS +
A+)
. ¥ |
ke tcperypt no auth
L tcperypt mutualcmac -—-—----- _
~ tcperypt sign ---—+-
743 Peryp SgL N
+ L I | | I I |
0 20 40 60 80 100 120 140

160

Performance (Apache, static content)

Apache, static content (req/s)
Protocol Native Divert
TCP 60,156 27,196
tcpcrypt (cached) 20,034
tcperypt (uncached) 14,215
SSL (cached) 19,787 12,063
SSL (uncached) 737 705

Performance (Apache, dynamic content)

m |0 connections per second

o Wordpress sucked so badly, couldn't see any different
between plaintext, SSL and tcpcrypt.

MP-TCP (first connection to server)

m First subflow does handshake, bootstraps crypto.
o Optionally, app-level auth.
o Can do >>10,000 connections per second.

m Additional subflows use NEXTKEY.
o No public key operations.

o Crypto protects against hijacking.

MP-TCP (subsequent connections to server)

m First subflow uses NEXTKEY.
o No public key operations.
m Subsequent subflows use NEXTKEY,

No public key operations.

Summary

m tcpcrypt is not specific to MP-TCP.
o Protects session integrity.
o Provides auth framework.
o Provides privacy against passive eavesdroppers.
o Provides forward secrecy.

m tcperypt is well suited for MP-TCP
o Protects subflow setup from hijacking attacks.

o Hides content, so middleboxes don't play guessing games with
partial content.

