
tcpcrypt

Mark Handley

What would it take to encrypt all
the traffic on the Internet, by

default, all the time?

Crypto 101: Encryption without
authentication is useless.

 Encryption without authentication is like meeting a
stranger in a dark alley.

 Whatever happens, there will be no witnesses.

tcpcrypt:
Opportunistic Encryption of TCP Flows

 Public key exchange in TCP handshake.
 Generate shared secret.
 Use shared secret to bootstrap encryption and MAC of

TCP packets.
 Use shared secret to allow session rekeying, lightweight

setup of additional sessions and session resumption
from different IP addresses.

So, you like hanging about in dark
alleys then?

 Did you close the curtains in your hotel room last night?

What use opportunistic encryption?

 Changes the balance of power.

 Easy for a passive eavesdropper to listen to all of your
traffic.

 Active interception is a lot harder, and is inherently
detectable.

So you support terrorists and child porn then?

 So you support identify theft?

 So you support phishing?

 So you support rate limiting of bittorrent traffic?

 So you support the great firewall of China?

 So you support government repression of freedom of
speech in <insert repressive regime of the moment>?

What about lawful intercept?

 Whose laws?

Are we having fun yet?

What about lawful intercept?

 Opportunistic encryption prevents passive
eavesdropping but is no obstacle to targetted active
interception.
 Can be man-in-the-middle.
 Can simply downgrade to regular TCP.

OK, so much for the politics…

 What about the technical issues?

Architecture

 Why push a weak crypto solution?

 Because it isn’t weak.

 It’s just the building block upon which you build more
powerful solutions.

Architecture

 Encryption is generic.
 Don’t need to know about the semantics of the data to keep

it secret.

 Authentication is application specific.
 Who do I trust?
 Who is authenticating whom?
 What identity am I authenticating?
 How do I bootstrap identity?

Assertions

 With the right encryption building block, we can support
a wide range of authentication schemes.

 We can make it go fast enough to be on by default.

Mechanism

In TCP handshake, negotiate tcpcrypt:
 C → S : HELLO
 S → C : PKCONF, pub-cipher-list
 C → S : INIT1, sym-cipher-list, NC, KC
 S → C : INIT2, sym-cipher, ENCRYPT(KC , NS)

Mechanism (2)

Generate shared secret:

ss[0] ← HMAC (NS , {KC , NC , cipher-lists, sym-cipher})

From ss[i], use HMAC(ss[i], x) for various constants x to generate
encryption and authentication keys for each direction.

Note: KC is ephemeral: not stored to disk and regenerated
frequently. Provides forward secrecy.

Mechanism (3)

 Subsequent connections can bootstrap using the shared
secrets without doing public key operations:
ss[i] ← HMAC(ss[i − 1], TAG_NEXT_KEY)

Embedding it in TCP

 HELLO and PKCONF fit in tcp options in SYN and
SYN/ACK.

 INIT1 and INIT2 are too big for options.

 Hijack the payload of first two data segments, as app
can’t have sent any data yet.

 Subsequent packets:

 All include MAC option and payload is encrypted.

Authentication

tcpcrypt generates a session ID from crypto at both ends:

sid[i] ← HMAC(ss[i], TAG_SESSION_ID)

 Session ID is available by getsockopt.

 Guaranteed to be the same at both ends iff there is no
man in the middle.

SSL-equivalent security

 Server can just sign the session ID using an SSL
certificate.

 Identical security to SSL, but also protects the TCP
session from reset attacks, etc.

 Session ID is not a secret.

 Can sign a batch of session IDs and send the batch
and sig to many clients. Big speedup!

Mutual authentication using passwords

 h = H (salt, realm, password)
 C → S : HMAC(h, TAG_CLIENT || Session_ID)
 S → C : HMAC(h, TAG_SERVER || Session_ID)

 Server knows that client knows the password.
 Client knows that server also knew the password.

 Proper mutual authentication.

 No more phishing attacks?
 You know if you’re talking directly to your bank or not

because you know that they know your password.

Authentication

 Many different authentication schemes enabled by the
session ID concept.

Performance

 Can be smart about using crypto.

 Eg. single core can perform 12,243 encryptions/sec
with a 2,048-bit RSA-3 key, but only 97
decryptions/sec

Get the client to decrypt, server encrypts.

Implementation

 Andrea implemented tcpcrypt using a divert socket to a
userland daemon.

 Runs on Linux, FreeBSD, MacOS, etc.

 Not optimal performance (too many copies).

 No kernel changes needed.

 Can even run in a NAT!

Performance (Connecton Setup)

Performance (Encryption)

Performance (with strong authentication)

Performance (Apache, static content)

Performance (Apache, dynamic content)

 10 connections per second

 Wordpress sucked so badly, couldn’t see any different
between plaintext, SSL and tcpcrypt.

MP-TCP (first connection to server)

 First subflow does handshake, bootstraps crypto.

 Optionally, app-level auth.

 Can do >>10,000 connections per second.

 Additional subflows use NEXTKEY.

 No public key operations.

 Crypto protects against hijacking.

MP-TCP (subsequent connections to server)

 First subflow uses NEXTKEY.

 No public key operations.

 Subsequent subflows use NEXTKEY.

No public key operations.

Summary

 tcpcrypt is not specific to MP-TCP.
 Protects session integrity.
 Provides auth framework.
 Provides privacy against passive eavesdroppers.
 Provides forward secrecy.

 tcpcrypt is well suited for MP-TCP
 Protects subflow setup from hijacking attacks.
 Hides content, so middleboxes don’t play guessing games with

partial content.

