
1

1

3C05: Advanced Software
Engineering

Unit 10: Configuration Management

Stefanos Zachariadis

http://www.cs.ucl.ac.uk/staff/s.zachariadis/

2

Unit 18: Configuration
Management

Objectives

♦To introduce the concept of configuration
management and the key problems which can
arise from configuration management failures
and collaborative development.

♦To present some techniques for configuration
management.

♦To consider tools for automated configuration
management support.

3

Scale and Complexity

♦ Projects tackled so far:
♦ Few (usually one) developer

• In the same location

♦ Hundreds/few thousands lines of code

♦ Small Scale (tackle limited problems)

♦ Increase the scale

♦ Group Projects (2-? developers)
• Distributed around the world

♦ Tens, hundreds of thousands lines of code

♦ Operating Systems, Office Suites, Web Browsers,
Middleware systems, etc.

4

Issues

♦Multiple people working on code &
documentation

♦ Access to other people’s changes

♦ Conflicting updates

♦ Simultaneous Updates

♦ Tracking/Logging of Changes

♦ Tracking bugs
♦When did it arise?

♦What changes were made to trigger it?

5

Configuration Management

♦ Systematic way to control changes to large
(or small) software systems. Allows for

♦Keeping track of all files in a project (including
additions and deletions)

♦Groups working on same project

♦Tracking changes (documents, source code etc)

♦Branching

♦Selecting versions

♦Merging changes

6

Basic Concepts

♦ Repository
♦ Where (usually all) files for the project are located

♦ Committing a change/file

♦ Uploading your version of the file to the repository

♦ Versions of a file
♦ Different revisions of a file, committed by a developer.

♦ Has an identifier (e.g. 1.1, 1.2, 1.3…)

♦ Can be stored as
• Distinct files (more space required)

• Deltas (more processing required)

2

7

Versioning Deltas

♦ More commonly used

♦ A list of changes/differences from one version to
another
♦ A “diff”

♦ Forward Deltas

♦ Processing required to fetch the latest version

V
0

V
1

diff

V
2

V
3

diffdiff

8

Versioning Deltas (2)

♦ More commonly used

♦ A list of changes/differences from one
version to another

♦A “diff”

♦ Reverse Deltas

♦Easy to fetch the latest version from the
repository

V
0

V
1

diff

V
2

V
3

diffdiff

9

How to Efficiently Use CM
Tools

♦ Use Open (Text) Formats
♦ .TEX, .TXT, .JAVA, .CPP, .XML, .HTML, etc.

♦ Binary data do not work well with CM tools
• Difficult to track changes (create diffs) to binary data

♦ Open formats can be processed in multiple platforms by
various programs.

• Do not assume all people in the group use the same software as you

♦ Modularise Project
♦ Makes it easier for more people to develop

♦ Use Interfaces and Abstract Classes in coding.
• Allows the programmers to use the API expected without worrying

about the implementation (that is being worked on by another
person).

♦ Standardise on coding/naming conventions

10

Example Tool: RCS

Revision Control System

♦ Works over individual files

♦ Reverse Deltas (all versions in the same file with a ,v suffix)

♦ Logs of changes are maintained in the file

♦ “Check out the Latest Version” to process it.

♦ “Check in the changes”

♦ Developers work on the same directory hierarchy

♦ When a file is checked out, it is locked.

♦ Others cannot checkout the file if locked

♦ Difficulty in supporting multiple programmers

♦ Difficulty in having multiple versions of a file concurrently

♦ Good for single-user projects (e.g. documents)

11

Example Tool: CVS

Concurrent Versions System

♦ Widely used on the internet

♦ Based on RCS

♦ Network Oriented

♦ Works on Projects (uses RCS for the individual files)

♦ Users work in their own directory hierarchy

♦ User “checks out” a snapshot of project
♦ Works on it independently

♦ Can “update” the snapshot with changes other users made

♦ User commits changes
♦ If changes conflict with those made by other users, CVS prompts

on how to resolve conflict.

♦ Can have different branches of the project
♦ E.g. experimental branch, stable branch

12

Example Tool: CVS (2)

Problems with CVS:

♦ Lack of Atomic Commits

♦ Difficult to change structure once created

♦E.g. Need shell access to the repository to delete
directories

♦ Does not support symbolic links

♦ Special treatment needed for binary files

♦Sometimes necessary, e.g. graphical images.

3

13

Example Tools: Other

♦ BitMover BitKeeper
http://www.bitkeeper.com/

♦ Rational ClearCase
http://www.rational.com/products/clearcase
/index.jsp

♦Microsoft Visual SourceSafe
http://msdn.microsoft.com/ssafe/

♦ Some of the tools integrate with
development environments (Emacs, Jedit
Visual Studio, etc)

14

Summary

♦ Configuration management is the most
important component of information
management in software development.

♦ Automated tools such as RCS/CVS can be
used to provide configuration management
and solve the issues arising with multiple
developers working on the same project

♦ The key elements of CM software is the
logging of changes and versioning.

15

Links for Casual Reading

♦ A collaborative development environment for open
source projects which includes a bug tracking
system, forums, mailing list, CVS support etc.
http://www.sourceforge.net

♦ Karl Fogel, “Open Source Development With CVS”
http://cvsbook.red-bean.com/cvsbook.html

♦ The GNU Project, RCS.
http://www.gnu.org/software/rcs/rcs.html

♦ Ant, a Java-Based Build Tool.
http://jakarta.apache.org/ant/

