
1

1© Wolfgang Emmerich & Anthony Finkelstein

Extreme Programming

2© Wolfgang Emmerich & Anthony Finkelstein

Unit 11: Extreme Programming

Objectives

– To review extreme programming an alternative 

software system development process rapidly 

gaining in popularity.

3© Wolfgang Emmerich & Anthony Finkelstein

Extreme Programming

No!

4© Wolfgang Emmerich & Anthony Finkelstein

Extreme Programming (XP)

• A deliberate and disciplined approach to software 

systems development

• Developed by Kent Beck

• About 4 years old, increasingly used in both large and 

small organisations

• Emphasises communication, feedback simplicity and 

above all customer feedback

• A member of a growing family of “lightweight 

methods”

5© Wolfgang Emmerich & Anthony Finkelstein

When to Use XP

• Remember you have to match the process to the 
problem!

• XP works when:

– Requirements are changing rapidly

– High risk, new challenge projects

– Small groups of programmers (between 2-10)

– Able to create automated tests

– Direct customer involvement is possible

6© Wolfgang Emmerich & Anthony Finkelstein

Rules and Practices of XP

• Planning

– User stories are written

– Release planning creates the schedule

– Make frequent small releases

– The project velocity is measured

– The project is divided into iterations

– Iteration planning starts each iteration

– Move people around

– A stand-up meeting starts each day

– Fix XP when it breaks



2

7© Wolfgang Emmerich & Anthony Finkelstein

User Stories

• User Stories are written by the customers

• Things that the system needs to do for them (similar 
to use cases)

• In the format of about three sentences of text written 
by the customer in the customers terminology

– without techno-babble!

• About 80 +- 20 is a typical number for a mid-sized 
project, each story between 1 and 3 weeks of ideal 
development time

• User stories drive creation of acceptance tests

8© Wolfgang Emmerich & Anthony Finkelstein

Iterations and Releases

• Release plan sets out overall schedule

• User stories are estimated in terms of effort and then 
are written on cards and prioritised by customer

• User stories are then divided into releases by 
development team

• Divide development into about 12 iterations of about 
1 to 3 weeks in length and have an iteration planning 
meeting before each iteration

• Project velocity=number of user stories per iteration

• Release often and aim to deliver a useable, testable 
system early

9© Wolfgang Emmerich & Anthony Finkelstein

Rules and Practices of XP

• Designing

– Simplicity.

– Choose a system metaphor.

– Use CRC cards for design sessions.

– Create spike solutions to reduce risk.

– No functionality is added early.

– Refactor whenever and wherever possible.

10© Wolfgang Emmerich & Anthony Finkelstein

Design

• Never add functionality before it is required!
• Organise your design around a shared model 
(metaphor). Work hard to create a simple 
understandable design.

• A spike solution is a very simple program to explore 
potential solutions. Build a system which only 
addresses the problem under examination and ignore 
all other concerns.

• Refactor mercilessly! Refactoring is the removal of 
redundancy, elimination of unused functionality, and 
rejuvenation of obsolete designs in order to keep the 
design simple and avoid needless clutter. It helps to 
make a design easier to understand, modify, and 
extend.

11© Wolfgang Emmerich & Anthony Finkelstein

CRC Cards

• CRC cards are a useful tool

– CRC- class, responsibilities, collaborations

– Class at top of card, responsibilities listed down the 
left side, collaborating classes listed to the right of 
each responsibility

• A CRC session proceeds with someone simulating the 
system by talking about which objects send messages 
to other objects. By stepping through the process 
weaknesses and problems are easily uncovered. 
Design alternatives can be explored quickly by 
simulating the design being proposed.

12© Wolfgang Emmerich & Anthony Finkelstein

CRC Cards



3

13© Wolfgang Emmerich & Anthony Finkelstein

Rules and Practices of XP

• Coding

– The customer is always available.

– Code must be written to agreed standards.

– Code the unit test first.

– All code is pair programmed.

– Only one pair integrates code at a time.

– Integrate often.

– Use collective code ownership.

– Leave optimization till last.

– No overtime.

14© Wolfgang Emmerich & Anthony Finkelstein

Rules and Practices of XP

• Testing

– All code must have unit tests.

– All code must pass all unit tests before it can be 
released.

– When a bug is found tests are created.

– Acceptance tests are run often and the score is 
published. 

15© Wolfgang Emmerich & Anthony Finkelstein

Acceptance and Unit Tests

• Create tests first - before the code.

• Use the user stories to drive the creation of 
acceptance tests

• Create or use an automated testing framework

• If you find a bug first create a test to stop it coming 
back again

16© Wolfgang Emmerich & Anthony Finkelstein

XP Map

17© Wolfgang Emmerich & Anthony Finkelstein

Other XP Practices

• Rate user stories by risk - do the hard things first!

• Build the model first with a spartan user interface

Add your own practices
XP is not fixed!

18© Wolfgang Emmerich & Anthony Finkelstein

Key Points

• There are alternatives to standard OO development 
processes

• XP works very well in certain situations but IS NOT an 
excuse for lack of development discipline, quite the 
contrary

• The core of XP is delivering exactly what is wanted 
now and regularly refactoring. These practices can be 
applied in other settings.


