Jasmine Farhad 13-Dec-02

Dept of Computer Science
University College London

The UML Extension Mechanisms

Introduction

There is an important need for organisations to evolve in today’s market. This has led
to a knowledge revolution, which enables organisations to be agile and responsive by
strategically capturing, communicating and leveraging intellectual assets. Object
orientation and component-based development are the backbone of this revolution and
it is the Unified Modelling Language (UML) that brings these together into an
essential foundation for evolution. But it is the UML extension mechanisms that take
this a step further and make it possible for an organisation to truly evolve in an agile
and responsive fashion, by strategically capturing, communicating and leveraging
intellectual assets.

The UML is a general purpose, tool supported, and standardised modelling language
that is used in order to specify, visualise, construct and document all the elements of a
wide range of system intensive processes. It promotes a use case driven, architecture
centric, iterative and incremental process, which is object oriented and component-
based. The UML is broadly applicable to different types of systems, domains,
methods and processes, which is why it is such a popular and broadly used language.

However, even though the UML is very well-defined, there might be situations in
which you might find yourself wanting to bend or extend the language in some
controlled way to tailor it to your specific problem domain in order to simplify the
communication of your objective. This is where the UML extension mechanisms
come in.

There exist four common mechanisms that can be used consistently throughout the
language - namely specifications, common divisions, adornments, and extensibility
mechanisms — which we are going to deal with here; however, the main focus of this
work will be on the latter of these four, i.e. the extensibility mechanisms.

Specifications

The first extension mechanism that was mentioned earlier is called specifications.
This is a very easy term to grasp as we all know what a specification means in our
everyday language. In the UML it is just as simple.

By using a specification, we are basically specifying something in a bit more detail so
that the role and meaning of the term being specified is presented to us in a more clear
and concise manner. For example, we can give a class a rich specification by defining
a full set of attributes, operations, full signatures, and behaviours. We will then have a
clearer notion of what the capabilities and limitations of that class are. Specifications
can be included in the class, or specified separately.

Common Divisions

This is the second extension mechanism that is provided to us by the UML. Common
divisions are used in order to distinguish between two things that might appear to be
quite similar, or closely related to one another. There exist two main common
divisions: abstraction vs. manifestation and interface vs. implementation.

In the former, we mainly talk about the distinction between a class and an object,
where the class is an abstraction and the object is a clear manifestation of that class.
Most UML building blocks have this kind of class/object distinction, e.g. use case,
use case instance etc.

In the second common division — interface vs. implementation — we say that an
interface declares some kind of contract, or agreement, whereas an implementation
represents one concrete realisation of that contract. The implementation is then
responsible for carrying out the interface.

Adornments

Adornments are textual or graphical items, which can be added to the basic notation
of a UML building block in order to visualise some details from that element’s
specification. For example, let us consider association, which in its most simple
notation consists of one single line. Now, this can be adorned with some additional
details, such as the role and the multiplicity of each end (see figl).

0.1 *

Employer employee

Fig 1. Association

One of the most important kinds of adornments is a note. This is a graphical symbol,
which is used for adding some comments or constraints to an element (or a collection
of elements) to help clarify the models that are being created. We may use notes in
order to attach some additional information to our model, such as an explanation, a
requirement, or just simply an o observation (see fig2).

Return copy
of self

Fig 2. Note

It is worth mentioning that a note carries no semantic impact, i.e. the content of a note
does not in any way change the meaning or significance of the model to which it is
attached.

Extensibility Mechanisms

The extensibility mechanisms allow you to customize and extend the UML by adding
new building blocks, creating new properties, and specifying new semantics in order
to make the language suitable for your specific problem domain. There are three
common extensibility mechanisms that are defined by the UML: stereotypes, tagged
values, and constraints.

Stereotypes

Stereotypes allow you to extend the vocabulary of the UML so that you can create
new model elements, derived from existing ones, but that have specific properties that
are suitable for your problem domain. They are used for classifying or marking the
UML building blocks in order to introduce new building blocks that speak the
language of your domain and that look like primitive, or basic, model elements.

For example, when modelling a network you might need to have symbols for
representing routers and hubs. By using stereotyped nodes you can make these things
appear as primitive building blocks.

As another example, let us consider exception classes in Java or C++, which you
might sometimes have to model. Ideally you would only want to allow them to be
thrown and caught, nothing else. Now, by marking them with a suitable stereotype
you can make these classes into first class citizens in your model; in other words, you
make them appear as basic building blocks.

Stereotypes also allow you to introduce new graphical symbols for providing visual
cues to the models that speak the vocabulary of your specific domain (see fig 4).

Graphically, a stereotype is rendered as a name enclosed by guillemots and placed
above the name of another element (see fig 3). Alternatively, you can render the
stereotyped element by using a new icon associated with that stereotype (see fig 4).

<<metaclass>> <<exceptions>>
Model Element Underflow

Fig 3. Named stereotype Fig 4. Named stereotype Fig 5. Stereotyped element
with icon as icon

Tagged Values

Tagged values are properties for specifying keyword-value pairs of model elements,
where the keywords are attributes. They allow you to extend the properties of a UML
building block so that you create new information in the specification of that element.
Tagged values can be defined for existing model elements, or for individual
stereotypes, so that everything with that stereotype has that tagged value. It is
important to mention that a tagged value is not equal to a class attribute. Instead, you
can regard a tagged value as being a metadata, since its value applies to the element
itself and not to its instances.

One of the most common uses of a tagged value is to specify properties that are
relevant to code generation or configuration management. So, for example, you can
make use of a tagged value in order to specify the programming language to which
you map a particular class, or you can use it to denote the author and the version of a
component.

As another example of where tagged values can be useful, consider the release team
of a project, which is responsible for assembling, testing, and deploying releases. In
such a case it might be feasible to keep track of the version number and test results for
each main subsystem, and so one way of adding this information to the models is to
use tagged values.

Graphically, a tagged value is rendered as a string enclosed by brackets, which is
placed below the name of another model element. The string consists of a name (the
tag), a separator (the symbol =), and a value (of the tag) (see fig 6).

Server
{processors=3}

Fig 6. Tagged Value

Constraints

Constraints are properties for specifying semantics and/or conditions that must be
held true at all times for the elements of a model. They allow you to extend the
semantics of a UML building block by adding new rules, or modifying existing ones.

For example, when modelling hard real time systems it could be useful to adorn the
models with some additional information, such as time budgets and deadlines. By
making use of constraints these timing requirements can easily be captured.

Graphically, a constraint is rendered as a string enclosed by brackets, which is placed
near the associated element(s), or connected to the element(s) by dependency
relationships. This notation can also be used to adorn a model element’s basic
notation, in order to visualise parts of an element’s specification that have no
graphical cue.

For example, you can use constraint notation to provide some properties of
associations, such as order and changeability (see fig 7).

Portfolio Corporation
{secure} |
Person
I
BankAccount gender: {female,male}
0..1
wife
0..1
husband

{self.wife.gender=female
and self.husband.gender=male}

Fig 7. Formal constraint using OCL

Conclusion

Modelling is all about communication. When using the UML you are provided with
all the tools you need in order to specify, visualise, construct, and document the
elements of a software-intensive system. However, there will be circumstances where
you might want to colour outside the lines, i.e. bend or extend the modelling language
in order to shape and grow it to the specific needs of your project.

UML provides several extension mechanisms that allow you to do this without having
to modify the underlying modelling language. These mechanisms let you add new
building blocks, modify the properties of existing ones and even change their
semantics.

The UML extension mechanisms provide not only a means for communication but
also a framework for the knowledge and experiences of the individuals within a
development culture such that the culture can evolve. They might not meet every need
that arises within the development of a project, but they do accommodate a large
portion of the tailoring and customising needed by most modellers in a simple manner
that is easy to implement. However, it is imperative to keep in mind that an extension
deviates substantially from the standard form of the UML and that by using it you
might therefore encounter some interoperability problems. For this reason, it is
essential to carefully weigh benefits and costs before using the extension mechanisms,
and only do so when absolutely necessary.

References:

* The Unified Modelling Language User Guide by Rumbaugh, Jacobsen and
Booch [Addison-Wesley]

* The Unified Modelling Language Reference Manual by Rumbaugh, Jacobsen
and Booch [Addison-Wesley]

* Using UML, Software Engineering with Objects and Components by Perdita
Stevens and Rob Pooley

