
1

1

3C05: Model Checking

By Dragana Cvijanovic

2

Model Checking

• Objectives

- To introduce model checking and its role 
within the design and development process;

- To explore some of the main model checking 
approaches.

3

Model Checking?

4

The Need for Formalism

• Nowadays, the involvement of hardware and software 
systems in our live is increasing. Where human lives 
and important investments are at risk, the failure is 
unacceptable.

• Just how many times have we heard about failures 
caused by an error in hardware or software system, 
that had fatal consequences?

• Ariane 5 rocket explosion

5

System Verification

• Reactive systems are systems that maintain an 
ongoing interaction with their environment.

• To ensure their correctness, most widely used 
techniques are:

- Simulation and testing

- Deductive verification

- Model checking

6

Simulation and Testing

• Most widely used techniques.

• Simulation is usually performed on an abstraction of 
the system.

• Testing is usually performed on the actual product.

• These techniques can be a very cost effective way for 
finding many errors, but in case of complex, 
asynchronous systems, they can only cover a limited 
set of possible behaviours.



2

7

Deductive Verification

• Employment of axioms and proof rules for correctness 
verification;

• Process can be quite lengthy and time-consuming, 
requiring a skilled professional;

• Rarely used in practice.

8

What is Model Checking?

• Conceived as an automatic verification technique for 
finite state systems

- developed independently by Clarke and 
Emmerson and by Queille and Siffakis in early 
1980s;

- performs an exhaustive search of the state space 
of the system in order to determine if some 
specification is true or not.

9

Why Model Checking?

• Model checking differs from traditional verification 
approaches in two crucial aspects:

- it does not aim of being fully general;

- it is fully algorithmic and of low computational 
complexity.

• It can detect errors that were missed by traditional 
verification techniques, and being cost-efficient, it is 
being adopted as a standard quality assurance 
procedure.

10

Model Checking Process

• Main building blocks of model checking are:

• Modelling

- initial step is to convert a design into a suitable 
formal form accepted by a model-checking 
tool;

• Specification

- ensure that all the properties that the design 
has to satisfy are stated, by using temporal logic;

• Verification

- by exhaustively exploring the state space, 
determine whether some specification is true or 
not.

11

Model Checking Process (contd.)

• Verification

- by exhaustively exploring the state space, 
determine whether some specification is true or 
not;

- this process is guaranteed to finish by the 
finitness of the model;

- if a specification is found not to hold, a 
counterexample (e.g. a proof of the offending 
behaviour of the system) is produced.

12

Systems and Properties 

• A common framework for representing reactive 
systems is provided by the concept of transition 
systems.

• A finite state system can be described as a tuple
M = {S, I, A, δ}, 
- where S is a finite set of states; 
- I ⊆ S is the set of initial states;
- A ⊆ S × S is the transition relation, specifying the 
possible transitions from state to state;
- δ is a function that labels states with the atomic 
propositions from a given language.

• Such a tuple is called state transition graph or Kripke
structure (in honour of logician Saul A. Kripke).



3

13

Temporal Logics

• We use temporal logics to predicate over the 
behaviour defined by Kripke structures

- the structure we obtain can be thought of as an 
infinite tree, representing all possible executions 
of the program.

14

Temporal Logics (contd.)

• According to how branching in the tree structure is 
handled, we distinguish Computation Tree Logic (CTL) 
and Linear Temporal Logic (LTL):

- in LTL operators describe properties of all 
possible execution paths;

- in CTL it is possible to quantify over paths from a 
given state.

15

Example: Labelled Transition Systems

• Just recall Labelled Transition systems from 3C03

LTS:=(S,T,A, δ,c) where

- S (a finite set of states)

- T ⊆ S × S (a finite set of transitions)

- A (an alphabet of atomic actions)
- δ : T→A (a transition labelling)

- c ∈ S (the current state)

- In this way LTS determines all possible traces of a 
process

16

Algorithms For Model Checking

• Given a transition system M and a formula ϕ, the 
model checking problem is to decide whether     

M ╞ φ holds or not:

- global approach used by CTL and other 
branching-time logics;

- local approach used by LTL.

• If the formula does not hold, provide the explanation 
why in form of counterexample.

17

LTL Model Checking algorithm

• Approach comes natural when the properties to be 
checked are expressed in terms of all possible 
executions of the program.

• Time complexity of LTL algorithm is exponential in 
size of the formula, but linear in size of the transition 
system (Pnueli and Lichtenstein).

18

CTL Model Checking Algorithm

• Introduced in early 1980s by Clarke and Emmerson:

- suitable for checking properties in terms of 
structure of the program;

- proved to be polynomial in both size of the model 
determined by the model checking program and 
in size of its temporal logic specification;

- introduced notion of fairness without increasing 
the complexity of algorithm.

• These early model checking systems were able to 
check state transition graphs with between 104 and 
105 states at a rate of about 100 states per second for 
typical formulas.



4

19

CTL* and Alternative Techniques

• Another type of branching-time logic is CTL*, 
combining both branching-time and linear time 
approaches:

- introduced by Clarke, Emmeson and Sistla;

- with time complexity as the LTL model checking 
algorithm.

• Most of the alternative techniques are based on use 
of automata for the model specification as well as for 
the implementation.

20

Symbolic Model Checking (SMC)

• The initial implementation

- Used explicit representation for the Kripke 
structure as a labelled, directed graph;

- This was practical for systems with small number 
of states;

- Faced with complex concurrent systems, this 
method failed to handle extensive number of 
states – “State explosion problem”.

21

Binary Decision Diagrams (BDDs)

• Major improvement was achieved with introduction of 
Binary Decision Diagrams by McMillan in 1987

- it is now possible to model systems with 
between 1020 and 1030 states.

• A state of the system is symbolically represented by 
an assignment of boolean values to the set of state 
variables.

22

Binary Decision Diagrams (contd.)

• A boolean formula (and thus its BDD) is a compact 
representation of the set of the states represented by 
the assignments, which make the formula true. 

• The transition relation can be expressed as a boolean
formula in two sets of variables, one encoding the  
current state and the other encoding the next state.

• The model checking algorithm is based on computing 
fixpoints.

• Now, there is now need for the construction of the 
entire state graph for the system.

23

SMV

• Later on, McMillan as part of his PhD thesis developed 
a model checking system called SMV.

• SMV extracts a transition system represented as a 
BDD from a program and uses a BDD-based search 
algorithm to determine whether the system satisfies 
its specification

- if not, it will produce an execution trace proving 
the invalidity of the specification.

24

Partial Order Reduction

• Algorithms based on the explicit state enumeration 
could be improved if only a fraction of the reachable 
pairs needs to be explored. 

• Used in asynchronous systems composed of 
concurrent processes with relatively little interaction.

• The interleaved model, has all the actions of the 
individual processes arranged in a linear order called 
an interleaving sequence.

• The full transition system considers all the possible 
interleavings of these sequences, resulting in an 
enormously large state space.

• Partial order reduction algorithms employed: Stubborn 
sets, Persistent sets, Ample sets, Unfolding technique, 
Sleep sets.



5

25

Alternative Approaches

• Symbolic representations and partial-order reduction 
have increased the size of the systems that can be 
verified to 1020 - 1030 states.

• Still, there are a vast number of systems that are too 
complex to handle.

• Several techniques that can be used in conjunction 
with existing approaches have been introduced

- Abstraction

- Compositional reasoning

- Symmetry reduction

- Induction.

26

Fields of Application

• In 1992 Clarke and his students used SMV to verify 
the IEEE Future+ cache coherence protocol. They 
found a number of previously undetected errors in the 
design.

• 1992 Dill and his students found several errors, 
ranging from uninitialised variables to subtle logical 
errors during the verification of the Cache Coherence 
Protocol of the IEEE Scalable Coherent Interface.

27

Fields of Application (contd.)

• R. Anderson et al. verified part of preliminary version 
of the system requirement specifications of TCAS II 
(Traffic Alert and Collision Avoidance System II). 
TCAS II is an aircraft collision avoidance system 
required on most commercial aircrafts in United 
States.

• A High-level Data Link Controller was being designed 
at AT&T in Madrid in 1996. Using FormalChecker
verifier, 6 properties were specified and five verified. 
The sixth property failed, uncovering a bug that 
would have reduced throughput or caused lost 
transmissions.

28

Key Points

• Model checking is a completely automatic and fast 
verification technique for finite state systems. It is 
now being widely used by large companies such as 
AT&T, Fujitsu, Intel, IBM, and Motorola etc. as part of 
their development process.

• The central task of model checking is to verify the 
correctness of systems, providing their quality 
assurance. The importance of this task is immense, 
since in certain cases, failures cannot be tolerated.


