
Robert Nunn 3C05 Coursework 2

Page 1 of 5

Distributed Software Architectures Using Middleware

Introduction
In this essay I will give a brief overview of distributed systems and middleware. The
main body of this work will be a discussion of four different families of middleware.
Finally, I will give an overview of an emerging middleware system known as publish-
subscribe.

Distributed systems
A distributed system is essentially a computer system where components of the system
are held on physically seperated, autonomous computers. These machines communicate
through the use of a computer network, either a fixed or, in the case of mobile
applications, a wireless network. The distributed systems appear to users as a single,
integrated computing facility.

In recent years, distributed systems have become increasingly popular and important in
modern computing. They provide opportunities for increasing the reliability, availability
and performance of applications. However, perhaps the most important feature of a
distributed system is that it allows the integration of existing systems. Companies do not
wish to rewrite large numbers of legacy applications and a distributed system allows
these applications to be integrated in a relatively straightforward manner. A distributed
system may comprise components written in a number of different programming
languages, running on different operating systems on a variety of computer architectures.
In many cases, a distributed system may be cheaper than a single, centralised system. A
large number of small, low-power systems may prove cheaper to purchase than a single
mainframe or supercomputer. This is the approach employed in Beowulf clusters, which
allow a collection of computers to act as a single large computer.

There are obviously many significant disadvantages to distributed systems. They are
much more complicated to design, build and maintain than an equivalent centralised
system. There are a large number of possible failures that could occur in a distributed
system, far more than would be found in a centralised system. Because of this, a
distributed system will have multiple points of failure, increasing the likelihood of the
system not functioning correctly. Communication over a network will always be far
slower and less reliable than communication over a local bus, which has a significant
effect on the performance of a distributed system.

Middleware
Middleware is a piece of software lying between the operating system and the
application. Middleware, essentially, is a tool to make a distributed system developers
life easier. It achieves this by hiding a number of the difficulties involved in building

Robert Nunn 3C05 Coursework 2

Page 2 of 5

such systems. Since distributed systems may consist of components written in different
languages and running on different operating systems, it is often helpful to have a single
common development and runtime environment. This is one of the most significant
advantages of middleware systems and will make the development of distributed systems
easier. Many failures can be dealt with automatically by the middleware without any
work needing to be done by the programmer or application. Many types of middleware
can provide access transparency, making a remote operation look similar to a local one.
Location transparency is another important feature provided by middleware as it means
that components can be migrated between computers without any changes required to
other components.

Marshalling and unmarshalling, where internal data structures are converted to a format
suitable for communication over the network and rebuild at the other end, is a very
important consideration in many distributed systems. It can also be a very time
consuming task and may have a significant effect on the performance of the final system.
Many middleware packages can automate the process, thereby saving programmers a
large amount of time.

Obviously, middleware brings its own set of problems to the development of distributed
systems. The use of middleware means that more software has to be purchased, installed,
tested, maintained and learnt by developers. In many situations, middleware may be
unnecessary or even undesirable. Real time applications often require strict guarantees
regarding the bandwidth used and time taken by communications that many middleware
systems are unable to provide. Also, the marshalling code generated by middleware
systems may not be as efficient as code written by the programmer.

There are four main types of middleware that I will discuss in this essay. They are
transactional, message-oriented, procedural and object/component middleware.

Transactional middleware
As the name implies, transactional middleware supports the development of systems
involving transactions running across multiple hosts. A transaction ensures that the
operations required will occur either on all hosts in the system, or no hosts in the system.
Transactions are often vital when components on different hosts must be kept in
consistent states. Some examples of transactional middleware are BEA’s Tuxedo and
Transarc’s Encina.

Transactional middleware uses the two-phase commit (2PC) protocol to implement these
transactions. The Distributed Transaction Processing (DTP) protocol defines a
programmatic interface for 2PC, which is used by most relational database management
systems. This allows servers and database management systems to be easily integrated.
Transactional middleware supports both synchronous and asynchronous communication
between hosts.

Robert Nunn 3C05 Coursework 2

Page 3 of 5

Unfortunately, transactional middleware suffers from a number of disadvantages.
Transactions have a significant overhead to manage and the guarantees they provide are
often unnecessary or undesirable. If a client is performing long-lived activities, then
transactions could prevent other clients from being able to continue. Most transactional
middleware systems do not provide any automated marshalling or unmarshalling.

Message-oriented middleware
Message-oriented middleware is a family of middleware that facilitates communication
by message exchange. Messages are small pieces of information sent between messages.
They can be used to provide a number of functions including event notification and
requests for service execution. Message-oriented middleware is particularly well suited
for distributed event notification and publish-subscribe systems. Examples of this type of
middleware include IBM’s MQSeries and Sun’s Java Message Queue.

Message-oriented middleware provides an asynchronous service using message queues,
but offers no natural support for synchronous communication. Although this may limit its
usefulness, it does allow for a number of additional features to be included easily,
including fault tolerance, priority schemes and client-server decoupling. This client-
server decoupling means that systems built using message-oriented middleware can be
very scalable. A further advantage of message-oriented middleware is that it can provide
group communication in a transparent manner, although messages will not be delivered
in an atomic way to all or no receivers.

Sadly, there are a number of disadvantages to message-oriented middleware. Perhaps the
most significant of these is the lack of access transparency. While message queues are a
natural approach to communication with remote computers, they are not a natural or
efficient method for communication between local components. The lack of access
transparency also means that migration and replication transparency are lost. Also,
marshalling code has to be written by the programmer, which does make the use of
message-oriented middleware harder.

Procedural middleware
Procedural middleware is generally used to provide Remote Procedure Calls (RPC).
These are available on a huge number of different operating systems, including most
Unix variants and Microsoft Windows systems. RPCs allow server components to be
defined using an Interface Definition Language (IDL). From the IDL, it is possible to
compile client and server stubs, which then perform the marshalling and unmarshalling
and network communication. RPC has bindings for multiple operating systems and
programming languages making it a very simple solution for cross-platform distributed
system programming.

The cross-platform nature of RPC gives it a huge advantage over other types of
middleware. From the developers’ perspective, RPC is a familiar method of
programming as remote calls are written in the same manner as a local call. The

Robert Nunn 3C05 Coursework 2

Page 4 of 5

automatically generated marshalling and unmarshalling code also make the process of
distributed system development significantly easier.

Procedural middleware, and RPC in particular, suffers from a number of disadvantages,
which has resulted in its limited use in modern distributed systems. There is no direct
support for multicast or asynchronous communication. Also, RPCs suffer from very
limited scalability. There is no direct support for replication or load balancing, meaning
that these aspects have to be dealt with directly by the developer, adding a large amount
of complexity to the systems. Procedural middleware is not as fault tolerant as other
forms of middleware and many possible faults have to be caught and dealt with in the
program.

Object & component middleware
Object middleware is an object-oriented extension of procedural middleware adding
many features that have appeared in modern object-oriented programming languages.
These extensions include support for inheritance, object references and exceptions.
Middleware systems in this category include the OMG’s CORBA, Microsoft COM, Java
RMI and Enterprise Java Beans.

Object middleware shares many of the same advantages as procedural middleware.
Again, marshalling and unmarshalling are performed by automatically generated client
and server stubs, relieving the programmer from a very error-prone task. Object
middleware also has synchronous requests as its default communication mechanism,
however many systems include support for asynchronous communications as well. Most
object middleware systems also support transactions and messaging, meaning that, in
many respects, it can replace all the other types of middleware. This combination of
features provides a very powerful and flexible middleware system.

One of the major disadvantages of procedural middleware is its lack of scalability. In
many object middleware systems, this is still not fully resolved. Enterprise Java Beans,
however, do include support for replication and, therefore, are becoming an increasingly
popular solution for distributed software development. Object middleware may not
always be applicable in non object-oriented environments and programming languages,
which may result in more complicated applications.

Publish-subscribe systems
Publish-subscribe systems are a type of message-oriented middleware that implement a
content-based network. In a content-based network, message destinations are decided
based on the content of that message, rather than a specific host name or address.

In a conventional message-oriented middleware system, messages are published by a
publisher to a specific queue. Clients then retrieve messages from the queues they are
interested in. In a publish-subscribe system, clients specify what messages they want to
receive (i.e. the content they are interested in). Publishers then send their messages to the

Robert Nunn 3C05 Coursework 2

Page 5 of 5

network, which will then route them to interested clients. The most obvious advantage of
publish-subscribe systems is that clients know that when they receive a message, it is
guaranteed to contain information of interest to them. They do not need to waste
resources dealing with information they are not interested in.

A subscription is the mechanism used by a client (subscriber in publish-subscribe terms)
to specify the content it is interested in. These are a list of restrictions on the information
that a subscriber wishes to receive and define a subset of messages. The subscription is
sent to the subscriber’s entry point into the publish-subscribe network, which then
forwards it to other nodes in the network. These nodes are commonly referred to as
dispatchers. The dispatchers are then responsible for ensuring that the subscriber only
receives messages from the subset it has defined.

A publication is the type of message sent by a server (publisher) containing information
that might be of interest to subscribers. As with subscriptions, they are sent to an entry
point into the publish-subscribe network. Dispatchers will then be responsible for
ensuring that each message reaches all interested subscribers.

Dispatchers are similar to routers in IP networks, although the routing of messages is
more complicated than the routing of IP packets. A forwarding table in each dispatcher
contains the subscriptions received, along with the address of the subscriber (note: a
subscriber in the table may be another dispatcher). When a dispatcher receives a
publication, it is compared against all subscriptions in the forwarding table. If it is in the
subset defined by a subscription, then it will be forwarded to the relevant subscriber.

One of the most interesting points about a publish-subscribe system is the anonymity it
can provide to both publishers and subscribers. Publishers have no information regarding
which, if any, subscribers have received their publications. No dispatchers, apart from the
subscriber’s entry point, know exactly which subscriber sent a subscription. This,
unfortunately, means that payment mechanisms for such systems become much harder. It
is possible for publishers to be anonymous, providing many opportunities for the
preservation of free speech. It is unlikely, however, that publisher anonymity would be
used in practice, as subscribers would probably want to know that the information they
receive is from a trustworthy source.

Summary
Distributed systems are an increasingly important field in computing, both in research-
oriented environments and in many large companies. Unfortunately, they are complex to
build and maintain and can be error prone. Middleware aims to reduce the complexity of
such systems by hiding unnecessary details. As with most types of software, there are
many different types of middleware, each having different aims and their own set of
advantages and disadvantages. There are no good or bad types of middleware; the best
choice depends on both the task at hand and the skills of the team who will be using it.

