
Palmit Singh Nijjar          Advanced Software Engineering         3C05 Coursework 2 
 

Distributed SW architectures using Middleware 
 

Middleware is once again becoming a hot talking point amongst many circles discussing 
cutting edge computer technologies,  especially as mobile devices become more and more 
commonplace. However many people do not fully understand what middleware is or have a 
distorted view of what it is and what can or cannot be achieved by its implementation. The 
confusion is further added to by the distinct lack of standards in fields such as mobile 
middleware. Quite simply middleware is connectivity software which allows processes on one 
device to communicate with processes on another device seamlessly, regardless of operating 
system or other heterogeneous variables. The middleware software takes care of all the 
network and OS protocols and provides a simple interface through which processes can 
communicate over networks. The network could be anything, the Internet, a LAN, WiFi or 
even mobile phones. Middleware is a huge and growing business with sales in the tens of 
billions of dollars field. When we have software which is distributed over many clients with 
multiple servers middleware can be an ideal communication tool. For example Delta Airlines 
uses middleware to communicate between 40,000 terminals worldwide and their mainframes. 
 
As global integration increases in the real world so it does in the computer world. There is a 
need to talk to processes which may be running on the other side of the world. As more and 
more integration happens due to things like expansion and mergers there is a need for better 
and more flexible middleware architectures, the demand is growing at a phenomenal scale.  
Integrating computer systems is no easy task, especially when we take into account factors 
such as bandwidth loads, different workstation architectures, multiple OS and multiple 
applications. For the programming team to overcome these issues they would need to 
implement their own middleware which significantly adds to the cost and more importantly 
time until deployment. So called ‘off the shelf’ middleware solutions do indeed give an 
attractive alternative to having to write the communication protocols in house and all the 
problems that brings. This means that distributed services can be implemented a lot faster 
and with a lot more ease if some sort of middleware is available. However the benefits and 
disadvantages of using middleware do need to be examined more closely before informed 
decisions can be made. 
 
On the benefits side middleware can bring advantages. If the system is distributed there are 
multiple parts to the system so if one should fail the other parts of the system could carry on 
the workload. For example we could have multiple component copies over different hosts. If 
one host were to fail the client could get the component from one of the other hosts, simply 
‘jumping’ hosts till a working component is found. This reduces the impact of host failures 
which other systems are prone to. Most middleware architectures are also very scalable so 
there is no need to reinvest in middleware software as the system grows. If there is peak 
demand at certain times using distributed architectures means the load can be spread to 
other servers which are relatively load free. This creates a kind of virtual processing power 
bank which can be very beneficial at keeping hardware costs down. For example one of the 
city banks now uses middleware to implement their grid computing architecture so that when 
their is peak demand for processing power they can send work to their computers in Japan or 
the US depending on where the workload is lowest (dependant on the market opening times 
in those time zones). Another major benefit is that application development is made simpler;  
the programmer can concentrate on writing the application, being unencumbered with having 
to worry about communication protocols. There is no need to look at network architectures, 
OS incompatibilities etc, the middleware software takes care of it all. When working with multi-
tier architectures client-servers can communicate seamlessly. The developer is insulated from 
all the inner workings and he/she can rely on simple function calls to get a server across the 
world to do some work. 
 
However one would be forgiven for thinking that middleware is the magic wand solution for all 
communication problems. The reality is that there is a massive jungle of vendors, all offering 
different products and hardly any of them compatible with their competitors. This means that 
the team will be reliant on their vendor for updates and maintenance tying them into a 
potentially expensive future. It also leads to problems when migrating to new middleware 



architectures as some of the code of the applications may need to be recompiled to take 
account of any new interface the new architecture may have. This is before we even mention 
the disadvantages of cost, some of the price tags along with middleware architectures are 
prohibitively expensive. A further disadvantage is the distributed nature of the system. While 
this is an advantage when using multiple components there is a danger that there are multiple 
points of failure. The development teams needs to take care that the software is written in 
such a way that there is no single weakness in the system, such that when one server goes 
down it does not bring the whole system to its knees. 
 
The current state of middleware is that there are many different architectures available; the 
choice depends upon the needs of the project. The architectures available range from RPC 
and MOM to the newer (still academic) Q-CAD and SATIN architectures. Remote Procedure 
Calls (RPC) is one of the oldest architectures on the block. It is debateable as to whether it is 
really middleware as there is no separate program but rather RPC is built into the applications 
which are communicating. The applications on either side of a network invoke stubs which are 
built into themselves when and if they need to communicate. The stubs are pre-compliled and 
are part of the application. RPC is arguably the simplest architecture but is now becoming a 
dated technology as it does not scale well and is not suited to multi-tier architectures. Most 
RPC implementations do not support peer-2-peer or asynchronous client-server interaction 
hence is not suited to use with object oriented programs. As the programming world is taking 
on object-oriented techniques at unprecedented rates RPC is looking like a technology 
destined for the scrap heap. 
 
Message oriented middleware (MOM) is targeted towards event driven applications. It is a 
client-server architecture allowing the application to be distributed over many different 
platforms hence taking the shape of truly independent middleware architecture. MOM makes 
it easier to create applications that span multiple operating systems and network protocols. 
MOM takes all responsibility for communication between applications and all the application 
has to do is send a message to the architecture telling it what to do, the MOM middleware 
then does all the communication with the server/client. It is also good for object oriented 
programming as it gives API’s that can allow objects to communicate via the middleware 
seamlessly; developers just need to write to the MOM API. MOM is a generally good 
architecture but it does have one major drawback, MOM is asynchronous and does not look 
at network loads. This means that a server could be overloaded by data and the client would 
keep sending more data regardless of the fact that the server is not reading in data as fast as 
the client is sending it. 
 
Object Request Broker (ORB) is a middleware solution which as the name suggests is suited 
particularly well to object oriented technologies. For the developer it encapsulates the details 
of the network and allows the programmer to build systems by using multiple objects which 
could be found in multiple locations. This makes it very useful in creating truly distributed 
software architectures and ORB is the perfect middleware ‘glue’ to allow the objects to 
communicate. Other implementations of middleware also exist, such as COM/DCOM, 
CORBA and JAVA/RMI with their own benefits and disadvantages. However we will now look 
at the latest middleware technologies which are just emerging. 
 
Mobile devices are growing not only in number but also in features and processing power. At 
the same time consumers are demanding more and more from their mobile devices. It doesn’t 
take a genius to work out that there is a lot of money to be made in this field. This has led to 
commercial demand for middleware that allows mobile devices to communicate. This 
communication is not only with other cellular phones but also for communication with other 
mobile devices in the environment. These devices could be anything, sensors in the region, 
servers, network points and all the other associated instruments. It would allow for example 
people to play mobile games with other people over a network, check the room temperature 
on your own device and even order a coffee from the waiter! This is where Q-CAD comes to 
the rescue, an architecture being developed here at UCL. Q-CAD (Quality of service and 
Context Aware Discovery) allows mobile devices to communicate seamlessly with their 
environment and access resources. These resources could be anything from services, 
sensors to downloadable components. Q-CAD automatically handles a request by a mobile 
device by giving access to the best possible component available at the time. For example if 



there are two versions of a game, one designed to run at a higher clock speed than the other 
it would be pointless sending a low processing power device the higher clock speed 
application. The Q-CAD system would choose the correct component for the device, in this 
case the application developed specifically for mobile devices with lower processing 
capabilities. This allows pervasive computing applications to select the best component 
available at the time. SATIN middleware is a component model for mobile self organisation. 
What does this mean? Let’s take a look at the background; the problem with many mobile 
devices is just that, they are mobile! If a user walks out of range of one service as things 
stand the application cannot use that service. What SATIN proposes is a framework whereby 
the system could self organise and adapt to the environment it is in and hence give a 
continuity of service, rather than a fixed and rigid application that cannot work without a 
networked resource for example. Code mobility and migration allows the system to be a lot 
more adaptive and hence useful to the end users needs. A change in the environment could 
thus lead to a change in the application which allows better functionality (a new service 
perhaps) or allows use with the loss of a service. 
 
As things are virtually all distributed software architectures use some sort of middleware, be it 
built in or more commonly standalone. The need for better and more flexible middlewares is 
growing, especially with the growth of mobile computing and the needs associated with 
wireless networks. There is also demand for standardisation so all developers can produce 
middleware which works to certain interfaces which makes migration simpler. Middleware 
needs to be updated to take account of new features such as wireless networks and mobile 
computers, which is now happening in the academic world. Hopefully the commercial 
implementation will soon follow. 
 
Word Count: 1874 


