
3C05/D22 Problem Class 18/3/2005

Modelling with UML, MOF, and OCL

James Skene, a research fellow in the department has developed an open-source OCL
parser and type checker. In this problem class you will use his software to develop a
type-correct MOF model including OCL constraints. His software is at an alpha-
testing stage, and you may encounter bugs during the exercise. You will use the
sourceforge.net bug-tracking software to submit bug reports if necessary.

Accompanying pages provide documentation for James’s system, and instructions for
using sourceforge.

EXERCISE:

1. Develop a MOF model of a unix- or windows-like file system. Your model
should at least include directories and files, and may include advanced features
such as symbolic links and user and group permissions. The model may be a
UML class diagram created in the Posiedon CE editor and imported into the
King editor, or you may use the concrete syntax of the MOF supported by the
King editor. Regardless of the approach you take, you will end up with your
model in the concrete syntax of the MOF.

2. Embed some OCL constraints into your model, by including them in the
relevant places in the specification created in the first step. You should at
least write the constraints that files should be uniquely named in a directory,
and that the directories should never be nested in themselves, even
transitively. This last constraint will require you to define a query operation
on at least one of your classes.

EMOF/OCL Syntax

EMOF is a language for describing data structures. Normally it looks just like UML
class diagrams. However, these require a graphical editor that would have been hard
to develop, so EMOF/OCL editor can either import a diagram from an XMI file, or
use a textual syntax to represent these models.

Like UML class diagrams, EMOF models can contain embedded OCL expressions.
This document describes the concrete syntax for EMOF/OCL models used in our
editor.

specification ::= “specification” <name> “{“ (class | package) * }

package ::= “package” <name> “{“ (type | package)* “}”

type ::= primitive | class | enumeration

primitive ::= “primitive” <name>
(
(“OCL_INTEGER” | “OCL_STRING” | “OCL_BOOLEAN” | “OCL_REAL)
(“IDENTICAL”)?
)?

enumeration ::= “enumeration” <name> “{“
(<name>)+
“}”

class ::= “class” <name> (“extends” typePath (“, “ typePath)*)? “{“
(attribute | operation | invariant)*

“}”

attribute ::= (“component”)? <name> “:” typePath (multiplicity)?
(“opposite” <name>)?

operation ::= <name> “(“ (parameter (“,” parameter)*)? “)”
“:” typePath (multiplicity)? (“=” “{“ expression “}”)?

invariant ::= “invariant” “{“ expression “}”

typePath ::= (“::”)? <name> (“::” <name>)*

multiplicity ::= “[“ (“*” | <integer> (“,” (“*” | <integer>))?) “]”

Names may be any combination of letters and numbers starting with a letter, or may
be double quoted Java-style strings.

The expression production corresponds to any valid OCL2 expression. According to
this syntax, any OCL expression must be surrounded by braces.

Using the EMOF/OCL editor

Start the king editor using

% cd /cs/research/sse/common0/rigel/sw/king
% java –jar emofocl.jar

The EMOF/OCL editor supports 3 different types of editing windows. These can be
accessed from the ‘Editors’ menu.

The three types of editor that will be relevant to the exercise are:

The UML editor – This allows you to load and view a UML model from an XMI file.
The button marked ‘export’ on the editor will convert the UML model to the
MOF textual syntax and open the King specification editor to display the new
model.

The EMOF/OCL specification editor – This allows you to edit a text file to contain a
MOF/OCL model. Clicking the parse button will cause the specification to be
parsed. As the specification editor is quite primitive, you may prefer to copy
and paste between the specification editor and a text editor of your choice.

The EMOF/OCL model editor – If your specification parses successfully, this editor
will display the specification converted into the abstract syntax of OCL/MOF.

Any syntax or type errors are reported in the console window, accessible from the
tools menu, and are also reported as exceptions in the terminal from which you ran the
tool.

REPORTING BUGS:

If the editor does something that you think it shouldn’t, please report it. You can
either email me a report at j.skene@cs.ucl.ac.uk, or preferably use the sourceforge
bug tracking system to do it. This can be accessed by clicking ‘bugs’ in the main
menu of the project’s home:

http://sourceforge.net/projects/uclmda/

You will need to be registered to the sourceforge site and logged on to submit a bug
report.

The EMOF/OCL application is open source, so feel free to use it as you please. I
have a number of ideas for projects related to the code if anyone is interested in
contributing.

Using the Poseidon UML Editor

Poseidon CE from Gentleware is a free UML editor. It will export models in an XMI
format (an XML based file format) that is compatible with the King editor’s UML
model editor.

Start Poseidon using:
% /cs/research/sse/common0/rigel/sw/king/poseidonCE-3.0.1/bin/poseidon.sh

You will need to register the product on its first use. Use the online registration
service to do this.

You can use Poseidon to produce the structural part of your MOF/OCL model. The
types and packages you create in Poseidon will translate into types and packages in
your MOF specification. Attributes of classes will convert into attributes in the MOF
models. Associations in the model will convert into opposed pairs of attributes in the
MOF model.

To ensure that your model converts correctly you should follow these rules:

1. Don’t define any operations on classes, just attributes and associations.
2. If Poseidon creates a java package at any stage, delete it. Check that none of

your attributes have undefined types or Java types.
3. Make sure that you explicitly name every association end in your model.

These names become the attribute names in the MOF model. Association
ends are not named by default, so you will need to set them explicitly by
selecting them and completing the name field.

4. Make sure all attribute and association names are unique within the scope of a
class. This includes all inherited attribute and association names.

5. Posiedon will create Java types for use as primitives in your model (such as
int, String etc.) Do not use these as the types of your attributes. Instead,
create a new class for each primitive type you wish to use. Call them
whatever you like, but stereotype them with the following stereotypes:
<<primitive>>, <<identical>> and one of <<oclBoolean>>, <<oclReal>>,
<<oclInteger>> or <<oclString>> depending on what type of primitive you
wish the attribute to be. Each type you define like this will therefore have 3
stereotypes attached to it.

6. If you wish you may create enumeration types by stereotyping a class with
<<enumeration>>. The attribute names of such a class convert into the
enumeration literals. The attributes may be typed in any way, this will not
transfer to the model.

Use the UML editor in the EMOF/OCL application to convert your model into the
concrete syntax of the MOF. The editor will report errors if it doesn’t like your
model.

Example

The following is a simple MOF/OCL model of a telephone network. The classes look
like this:

Converted into the concrete syntax with invariants added:

specification NetworkModel {

 primitive PhoneNumber OCL_STRING IDENTICAL

 primitive Boolean OCL_BOOLEAN IDENTICAL

 primitive Integer OCL_INTEGER IDENTICAL

 class Telephone {

 number : PhoneNumber
 localExchange : Exchange opposite phone
 network : Network opposite telephone

 connectedTo(t : Telephone) : Boolean = {

 localExchange.connectedTo(t)
 }
 }

 class Network {

 component exchange : Exchange[*] opposite network
 component telephone : Telephone[*] opposite network

 invariant {

 telephone->forAll(t |

 -- All no phone number in the network should be the prefix
 -- of any other.
 Sequence(Integer) { 0 .. t.number.size() }->forAll(l : Integer |

 not telephone->exists(p : Telephone |

 t.number = p.number.substring(0, l)
)
)
 and
 -- All phones in the network must be able to reach all other
 -- phones
 telephone->forAll(p : Telephone |

 t.connectedTo(p)
)
)
 }
 }

 class Exchange {

 peer : Exchange[*] unique opposite otherPeer
 otherPeer : Exchange[*] unique opposite peer
 phone : Telephone[*] opposite localExchange
 network : Network opposite exchange

 connectedTo(t : Telephone) : Boolean = {

 phone->exists(p | p = t)
 or
 peer->exists(connectedNotVia(t, Set(Exchange) { self }))
 }

 connectedNotVia(t : Telephone, notVia : Exchange[*] unique) : Boolean = {

 phone->exists(p | p = t)
 or
 (peer - notVia)->exists(connectedNotVia(t, notVia->including(self)))
 }

 invariant {

 -- peer/otherPeer relationship is symmetric
 peer->forAll(p | otherPeer->exists(o | o = p))
 and
 otherPeer->forAll(o | peer->exists(p | o = p))
 }
 }
}

Note the addition of the primitive types, and the fact that the type PhoneNumber is
equivalent to the OCL string type.

