
Program Slicing

Program slicing is a technique for aiding debugging and program comprehension by
reducing complexity. The essence of program slicing is to remove statements from a
program that do not affect the values of variables at a point of interest. There are
many ways to do this (both variants of program slicing and different algorithms for
achieving the same result).

In this essay I will give an overview of slicing as well as briefly covering some of the
different approaches and algorithms. I will look in detail at one particular algorithm
and survey the program slicing tools available.

Motivation

Debugging programs has always been regarded as a difficult activity. Often the
hardest part of debugging can be finding the bug in the first place, once the bug is
found it can be easy to fix. One of the reasons that a bug can be hard to find is that
there can be a lot going on in a piece of code and not all of it will have an effect on
the statements of interest. Weiser noted in [5] that programmers were mentally
filtering out statements that could not affect a given point of interest in order to find
bugs. If this process could be automated it could be faster and more accurate (due to
less scope for human error) and a useful aid for debugging.

Program slicing has many applications apart from the original motivation of
debugging. It is of great use in program comprehension, for example when software
has to be maintained or evolved. It can be used to generate many automated software
metrics such as a measure of cohesion in a program fragment. It can also aid testing,
model checking (see Bandera below) and compiler tuning amongst others [4].

Overview

The first step in slicing a program is to specify a point of interest (a statement in the
program to be sliced) and a set (often a singleton set) of variables. This is called the
slicing criterion and is expressed as (n, V) e.g. (11, {x}). A program slice is then
computed by removing statements that can not affect (or can not be affected by,
depending on the type of slicing) the values of the specified variables at the given
point of interest.

The produced program slice is a reduced (although not strictly so, the whole program
is a valid program slice) program. Weiser stated in [5] that this reduced program
should be executable, this constraint has been relaxed in some research since then. In
the case that the program slice is executable then when the original program and the
slice are executed the variables specified in the criterion should have the same values
at the point of interest (for all input if we are slicing statically, see below for static vs.
dynamic slicing).

Some program features are more difficult to slice than others. Unstructured control
flow (such as ‘goto’ statements) are very difficult, any indirection in a program such
as pointer or array use or object orientation also makes slicing more difficult. In fact
in the general case program slicing is an undecidable problem [5]. In order to carry

out program slicing we have to define slicing such that a slice is only equivalent to the
original program when the original program terminates. Furthermore, a strictly
minimal slice can not be found and only an approximation can be computed, however,
this is usually good enough and program slicing is still a useful technique.

Variations

There are several variations on the theme of program slicing, many of these are
orthogonal variations and a wide variety of program slicing can be performed.

Backward slicing is perhaps the most intuitive form of program slicing. Here the slice
is computed by working backwards from the point of interest finding all statements
that can affect the specified variables at the point of interest and discarding the other
statements. Forward slicing is the opposite of this (and in fact many of the algorithms
for backward slicing can be simply reversed to work for forward slicing). Here we
work forward from the point of interest finding those statements that can be affected
by changes to the specified variables at the point of interest.

Chopping is another form of program slicing, it combines both forward and backward
slicing. Two points of interest are chosen and the slice consists of those statements
that can transmit a change from the source to the target. There are other ways of
restricting the slice in other fashions such as dicing and barrier slicing.

There are also different ways to compute the slice. The main division is between static
and dynamic slicing: static slicing works by statically analysing the code, this means
examining some representation of the source code without actually executing the
program in question. Dynamic slicing dynamically analyses the code by executing the
program. When we slice dynamically we must do so with a given input (included in
the criterion), thus a dynamic slice is only correct for a specific input. By contrast a
static slice is correct for all input. Quasi-static and conditional slicing are types of
program slicing that combine static and dynamic slicing.

Most forms of program slicing are syntax preserving. That is they leave the syntax of
the original program largely untouched and simply remove statements to create a
program slice. The exception to this rule is that if removing statements may cause a
compilation error then statements may be altered (for example in Java, removing the
‘then’ part of an if statement where the if statement does not use a block statement),
this is still considered syntax preserving. If this constraint is relaxed and the slicer is
allowed to make syntactic changes as long as the relevant semantics are preserved
then this is known as amorphous slicing.

Example

The following pseudo code program will be considered:

1: f(int a)
2: {
3: int x := a;
4: int y := 25;
5: String z := “”;
6: for (int i:=0; i<x; ++i)

7: {
8: z := z ++ “ “ ++ y;
9: y := y + 2 * i;
10: }
11:
12: print(x ++ “: “ ++ z ++ “ “ ++ y);
13: }

A backward slice on the criterion (12, {y}) will be found. Statement 12 is a special
case (it is obviously useful to include, but in this example y is not modified so is not
strictly part of the slice). Working backwards: statement 9 modifies y but 8 does not,
therefore we add 9 to the slice but delete 8. The for statement on line 6 must be
included since its range of influence includes statement 8, this statement (6) includes
the variable x and so statement 3 must be included (as well as statement 4), again
statement 5 can be removed since z does not affect the value of y at line 12. the
resulting program slice is thus:

1: f(int a)
2: {
3: int x := a;
4: int y := 25;
6: for (int i:=0; i<x; ++i)
7: {
9: y := y + 2 * i;
10: }
12: print(x ++ “: “ ++ z ++ “ “ ++ y);
13: }

Implementation

Each type of slicing described above requires a different algorithm or the tailoring of
an existing algorithm. In addition there are several different algorithms for some of
the variants. Each algorithm is language independent, however they will need
tweaking for the specific language they must slice due to the different constructs
present in the language. In particular language features that rely on indirection (e.g.
pointers) or unstructured control flow (e.g. goto) must be addressed.

Weiser’s original algorithm [5] will be covered below. This algorithm computes static
backward slices using dataflow analysis. Other algorithms may use information flow
relations or dependence graphs [4].

Weiser’s algorithm

Weiser’s algorithm is based on dataflow analysis: the static analysis of a control flow
graph. A control flow graph is a representation of a program that contains information
about branching and other control flow in a program, it contains little additional
information (for program slicing we require the sets of variables modified and those
used by each statement). Control flow graphs (and dataflow analysis) are often used
by compilers, especially for optimisation.

An example control flow graph taken from [1]

For each statement in the program the algorithm is interested in the edges of the
control flow graph (denoted icfgj where there is an edge between the statements i
and j), the set of variables used (referenced) by the statement (denoted Ref(i) for a
statement i) and the set of variables modified (defined) by the statement (Def(i)).

Weiser’s algorithm is given by the following equations from [4]:

R(i) is the set of relevant variables for a statement i, S is the set of relevant statements
for the program and B is the set of relevant branching statements for the program. C is
the criterion, C = (n, V), as mentioned above. Infl(b) is the set of all statements in the
range of influence of a branching statement b, that is, all statements whose execution
depends on the result of the branching statement.

The algorithm starts by finding the set of directly relevant variables, R0(i), for each
statement (this set may be empty if there are no directly relevant variables for a
statement). From these sets a set of directly relevant statements, S0, is found by taking
all statements that define a variable that is relevant to the following statement in the

control flow graph. Next a set of (indirectly) relevant branching statements is found
from the set of relevant statements. The algorithm then progresses iteratively, R being
found from the last iteration’s R and those variables relevant to the branching
statements and S and B being found in the same way as above (but S includes the last
iteration’s B). S will be a non-decreasing subset of the statements in the program
being sliced. When S reaches a fixed point between iterations (i.e. S does not increase
from one iteration to the next) then this set S is the desired program slice.

Tools

As a debugging aid (and for some of its other applications) program slicing is only
really useful when implemented as a tool for the programmer, indeed there are many
program slicing tools available. Most tools do not offer comprehensive coverage of
the targeted program language and generally implement only the simplest types of
program slicing (typically static, syntax preserving slicing). Other variations of
program slicing have typically only been implemented over toy languages and is still
very much a research area [2]. However, some tools (for example the Wisconsin
Program Slicer and Unravel) cover a large subset of the targeted language and are
very powerful and useful tools despite these restrictions.

The most widely known program slicing tool is the Wisconsin Program Slicer [10]. It
can perform forwards and backwards slicing and chopping of C programs, it can only
slice statically. The project is no longer supported but the code base has been evolved
into CodeSurfer [7], this is a commercial tool that is multi-platform and (relatively)
comprehensive. It can slice C++ (at an alpha stage) and C, again performing forward
and backward slicing and chopping.

Unravel [9] is another widely known tool. It can only perform static, backward slicing
of C programs, but is fairly comprehensive.

The Bandera project [6] is a project at Kansas State University. Bandera is a model
checker that uses program slicing. The Indus project [8] is a spin off from Bandera
that contains some of the primitive tools used by Bandera including the Java Program
Slicer, this is a library and has been presented as an Eclipse program called Kaveri.
This program slicer again does static forward and backward slicing and chopping, but
of Java programs. It can handle object orientation and concurrency.

Conclusion

Program slicing is a technique to reduce the complexity of a program in order to aid
debugging or comprehension. It has a multitude of uses, variations and
implementation methods. In this essay I have covered one particular algorithm for
implementing static, backwards slicing that uses dataflow analysis. There are many
powerful tools available to perform program slicing and there is also vast scope for
improvement in this area as the more modern (and complex) forms of program slicing
have not been implemented as usable tools for complete languages.

Bibliography

[1] Andrew W. Appel and Jens Palsberg. Modern Compiler Implementation in
Java, Second Edition. Cambridge University Press. 2002.

[2] M Harman and R Hierons. An Overview of Program Slicing. Software Focus.
2001.

[3] J e f f Rus se l . P rog ram S l i c i ng L i t e r a tu r e Su rvey .
http://www.ece.utexas.edu/~jrussell/seminar/slicing_survey.pdf. 2001.

[4] Frank Tip. A Survey of Program Slicing Techniques. Journal of Programming
Languages. 1995.

[5] Mark Weiser. Program Slicing. IEEE Transactions on Software Engineering.
1984.

[6] Bandera Project. http://bandera.projects.cis.ksu.edu/.
[7] CodeSurfer. http://www.grammatech.com/products/codesurfer/.
[8] Indus Project. http://indus.projects.cis.ksu.edu/.
[9] Unravel. http://hissa.nist.gov/unravel/.
[10] Wisconsin Program Slicing Tool. http://www.cs.wisc.edu/wpis/slicing_tool/.

