
1

Program Slicing

Nicholas Cameron

Nicholas Cameron UCL CS 2005 2

Program Slicing

 Overview and example

 Motivation

 Types of slicing

 Implementation

 Tools

 Tool demo - Bandera

 Summary and further reading

Nicholas Cameron UCL CS 2005 3

Program Slicing

 Debugging technique
 A slice consists of all statements that

affect the values at a point of interest
 Produces reduced, executable program

value at point of interest unchanged

 More difficult for certain features:
control flow (procedures, goto)
pointers/arrays
object oriented programs
concurrent programs

2

Nicholas Cameron UCL CS 2005 4

Example
1: f(int x)
2: {
3: int y := 25;
4: String z := “”;
5: for (int i:=0; i<x; ++i)
6: {
7: z := z ++ “ “ ++ y;
8: y := y + 2 * i;
9: }
10:
11: print(x ++ “: “ ++ z ++ “ “ ++
y);

12: }

Nicholas Cameron UCL CS 2005 5

Example: (11, {y})
1: f(int x)
2: {
3: int y := 25;
4: String z := “”;
5: for (int i:=0; i<x; ++i)
6: {
7: z := z ++ “ “ ++ y;
8: y := y + 2 * i;
9: }
10:
11: print(x ++ “: “ ++ z ++ “ “ ++
y);

12: }

Nicholas Cameron UCL CS 2005 6

Example (11, {y})
1: f(int x)
2: {
3: int y := 25;
5: for (int i:=0; i<x; ++i)
6: {
8: y := y + 2 * i;
9: }
11: print(x ++ “: “ ++ z ++ “ “ ++
y);

12: }

3

Nicholas Cameron UCL CS 2005 7

Example (cont.)

(11, {x})

f(int x)
{

print(x ++ “: “ ++ z
++ “ “ ++ y);

}

(11, {z})

f(int x)
{

int y := 25;
String z := “”;
for{int i:=0; i<x; ++i)
{

z := z ++ “ “ ++ y;
y := y + 2 * i;

}

print(x ++ “: “ ++ z
++ “ “ ++ y);

}

Nicholas Cameron UCL CS 2005 8

Motivation

 Debugging is hard: finding the bugs is
hard
Too much ‘noise’

 Weiser noticed programmers automatically
filter out irrelevant statements whilst trying
to find a fault

 Automation of this process: program
slicing

Nicholas Cameron UCL CS 2005 9

Applications

 Debugging
 Comprehension

Maintenance and evolution

 Cohesion measurement
And other metrics

 Other uses suggested
Compiler tuning
Testing
…

4

Nicholas Cameron UCL CS 2005 10

Types of slicing
 Forward vs Backward

 Chopping
 Slice consists of statements that ‘transmit an effect’

from source to target

 Static vs Dynamic
 Static slice: no assumptions regarding input

 Dynamic slice: for a given input

 Syntax preserving vs amorphous

 Others: quasi-static, conditional, dicing, barrier
slicing, etc.

Nicholas Cameron UCL CS 2005 11

Dataflow analysis

 Weiser’s implementation uses
dataflow analysis

 General technique widely used
by optimising compilers

 Works on a control flow graph:
an intermediate representation
of a program

 Analyse program flow and
variable assignments

 A semantic analysis

Control Flow Graph

Nicholas Cameron UCL CS 2005 12

Weiser’s Slicing Algorithm

 Iterative algorithm
 Notation

 Slicing criterion: C = (n, V)
 i_cfgj means there is an edge from i to j in the control

flow graph
 Def(i) is the set of variables defined in a statement i
 Ref(i) is the set of variables referenced in a

statement i

 Example: 4: a := b + 1
 Def(4) = {a}
 Ref(4) = {b}

5

Nicholas Cameron UCL CS 2005 13

Weiser’s Slicing Algorithm

 Find R0, the set of directly relevant variables for
each node in the control flow graph, i

 Work back through graph finding relevant
variables

 Directly relevant statements, S0 found from R0

 A branching statement b is indirectly relevant if
i∈S0 and i is in the range of influence of b, Infl(b)

Nicholas Cameron UCL CS 2005 14

Weiser’s Slicing Algorithm

 We continue by calculating the indirectly
relevant variables, Rk

Rk-1 and variables affecting b ∈ Bk-1

 And indirectly relevant statements, Sk

Bk-1 and statements defining Rk

 The fixpoint of Sk is the desired program
slice

Nicholas Cameron UCL CS 2005 15

Weiser’s Slicing Algorithm

Taken from [Tip 95], see further reading

6

Nicholas Cameron UCL CS 2005 16

Interprocedural slicing
 Slicing across procedure boundaries
 First calculate slice in procedure containing C
 For procedure calls to Q use:

 variables that may be modified by Q as Def(call Q)
 variables that may be used by Q as Ref(call Q)

 Then calculate slices for all procedures that are
called or call the original procedure

 Criterion:
 Callee: (Last statement in called proc, relevant vars in

P, in scope of called proc)
 Caller: (Any call to P, relevant vars in first statement

of P, in scope of calling proc)

Nicholas Cameron UCL CS 2005 17

Alternative Implementations
 Other implementations based on

 Information flow relations
 Dependence graphs

 Need to extend algorithms to cope with
 Unstructured control flow (break, goto, etc)
 Arrays, pointers and datatypes
 Distribution and concurrency

 Algorithms vary in accuracy and efficiency,
especially when dealing with above factors

 Also algorithms for dynamic and quasi-static
slicing

 Language specific issues

Nicholas Cameron UCL CS 2005 18

Note on the Halting Problem

 Program Slicing in the most general case
is undecidable

 Therefore define a slice as equivalent to
the original program only when the
program terminates

 Weiser also argues that calculating a
minimal slice is undecidable
We can not find equivalence of two code

fragments
But slices are small enough

7

Nicholas Cameron UCL CS 2005 19

Tools

 Mostly do simple, static slicing

 Advanced program slicing only so far
implemented on toy languages

 Most are not comprehensive

 BUT still powerful and very useful

Nicholas Cameron UCL CS 2005 20

Tools

 Wisconsin Program-Slicing Tool/CodeSurfer
 Multi-platform, C and C++

 Forward and backward slicing, chopping. Static

 Unravel
 C, only static backward slicing

 Bandera/Indus/Kaveri
 Implements slicing as part of a tool set for model

checking

 Concurrent Java.

 Eclipse plugin – multi-platform

Nicholas Cameron UCL CS 2005 21

Summary

Program Slicing:

 Reduces complexity for debugging and
comprehension

 Filters statements that do not affect the
values at a point of interest

 Many implementations
eg: dataflow analysis

 Tool support

8

Nicholas Cameron UCL CS 2005 22

Further Reading

 An Overview of Program Slicing. M Harman & R Hierons.
Software Focus, 2001.
http://www.dcs.kcl.ac.uk/staff/mark/sf.html

 Program Slicing. Mark Weiser. IEEE Transactions on
Software Engineering, 1984.

 A Survey of Program Slicing Techniques. Frank Tip.
Journal of Programming Languages, 1995.

 Program Slicing Literature Survey. Jeff Russel.
http://www.ece.utexas.edu/~jrussell/seminar/slicing_survey.pdf.
2001

 Google!

