
1

Software Development Team
Structures

(3C05/D22)

Unit 7: SW Development Team Structures

• Objective:
– To discuss the different roles involved in large-scale software

engineering projects
– To show the qualifications and capabilities for team members

adopting these roles
– To review how teams are composed and projects are staffed.

Creating an OO Team

• Software Development Learning Curve
– 1 month to learn language syntax
– 6 to 9 months to become proficient in new paradigm
– 12 to 18 months to become moderately proficient in modelling and

methodology

2

How to Kick-Start an New-Paradigm Project

• Mentoring!
• Seed project with experienced people
• External/internal consultants at key stages

– Planning
– Project start up
– Regular design and

code reviews
– Post-project review

Case Study

• A company took a group of non OO programmers and
over a period of one month trained them in C++ and an
OO methodology. They then launched them straight into a
full-blown OO Project. Naturally the Project failed badly.
How did this happen? Management did not understand
that object technology is different to conventional software
development.

Core

Supplemental

Peripheral
Core - Software production
Supplemental - Supports core
Peripheral - at project edges

But where does Booch
put Project Managers?

According to
Booch!

The OO Project Team

3

Sub-teams

Architecture
Team

Analysis
Team

Design
Team

Implementation
Team

Deployment
Team

Aim for fluid sub-teams:
Roles blur in an OO project

Task Force
(Tiger Team)

Abstractionists

• To simplify our discussion, we introduce the role of
Abstractionist

• Abstractionists embrace the following USDP roles:
– Use-Case Specifier
– Use-Case Engineer
– System Analyst
– System Integrator

• These USDP roles are often done by the same person
anyway!

Core Team: Structure

Architect

Abstractionist Abstractionist

Component
Engineers

4

What about testing?

• Testers can be a member of an Abstractionists team (just
like a Component Engineer)

• Testers may belong to a separate Test Team

This often depends on company policy!

Staffing

Architects 10%

Abstractionists
30%
Component
Engineers 50%
Supplemental
10%

These are
just average

figures!

Staffing Profiles

Architect

Abstractionists

Component Engineers

N
um

be
rs

Time

5

Core Team: Roles

• Architect
– System architecture and vision

• Abstractionist
– Micro-architectures
– One Abstractionist per class package

• Component Engineer (programmer)
– Implementing abstractions

Architect: Responsibilities

• System Architecture
• Assess technical risks
• Define content of successive iterations

– Help in planning

• Consultancy
• Marketing

– Future product definition

Architect: Skills

• Experience
– Problem domain
– Software engineering

• Vision
• Leadership
• Communication
• Proactive and goal-oriented
• Risk taker

6

Abstractionist: Responsibilities

• Identify classes, packages, subsystems, mechanisms,
frameworks

• Define interfaces
• Direct implementation and (possibly) testing
• Advise and support the Architect
• Mentor and lead Component Engineers

Abstractionist: Skills

• Experience
– Must know how to find abstractions
– Strong programming skills

• Leadership
– Ability to manage a small team of developers

• Communication
– Able to express complex ideas simply

• Proactive and goal-oriented

Component Engineer: Responsibilities

• Implement scenarios, mechanisms and classes
• Tactical class design
• Class-level testing
• Advise abstractionist about tactical risk
• Participate in Task Forces and code walkthroughs

7

Component Engineer: Skills

• Good coding skills and likes to code!

• Perhaps has specialisations e.g. GUI

• Familiar with OOA/OOD principles

Myth of the replaceable programmer

• Some Project Managers view programmers as the “lowest
form of life”. They are just replaceable parts

• This ignores the fact that a good programmer may be up to
10 times more productive than a bad programmer

• Good programmers are very valuable and need to be
encouraged and rewarded

OO as an Amplifier

• Object orientation acts like an amplifier - it makes the best
programmers much better, and the worse programmers
much worse!

• The same is true for Abstractionists !

8

The Supplemental Team

• Project Manager
• Integrator
• Quality Assurance Engineer

• Documentor
• Toolsmith
• System Administrator
• Librarian

Project Manager: Responsibilities

• Oversee the Project’s deliverables
• Establish and drive schedules
• Staffing
• Work break down
• Budgeting
• Co-ordinate with patrons and user community

Project Manager: Skills

• Experience
– Leadership

– Proactive
– Goal oriented

– Communication

• Pragmatic
• Risk-aversive
• Politically aware

9

The Peripheral Team

• Patron
– Champions the Project

• Product Manager
– Manages a product line
– Manages marketing, training, support

• End user
– Client of the Project

• Technical support

Key Points

• The key to successful operation of the USDP or any other
OO lifecycle is to organise into small flexible teams

• There should be a “chain of responsibility” and continuity of
ownership for artefacts from requirements down to code

• A good policy is to give responsibility for whole chains to
individual teams

