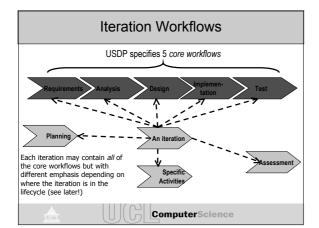
Unified Software Development Process (3C05/D22) ComputerScience Unit 5: USDP Objectives: Introduce the main concepts of iterative and incremental development - Discuss the main USDP phases ComputerScience **USDP** • USDP is an industry standard software development process Free!The generic process for the UML • USDP is: - Use-case and risk driven Architecture centric Iterative and incremental For reference: Ivar Jacobson, Grady Booch, James Rumbaugh: The Unified Software Development Process. Addison Wesley. 1999 ComputerScience

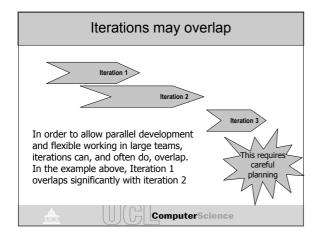
USDP for your project...

- USDP is a generic software engineering process. It has to be customised (instantiated) for your project:
 - In-house standards
 - Document templates

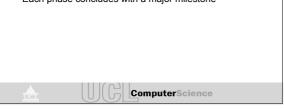
 - ToolsDatabases
 - Lifecycle modifications
- · Rational Unified Process is an instantiation of USDP. RUP is a product marketed and owned by IBM Software.
- RUP also has to be instantiated for your project!

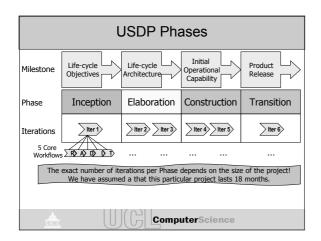
ComputerScience

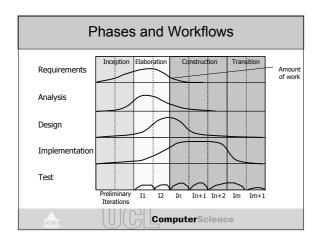

Iterations

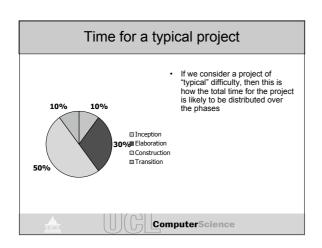

- Iterations are the key to the USDP
- Each iteration is like a mini-project including:
 - Planning
 - Analysis and design
 - Integration and test
 - An internal or external release
 - The result of an iteration is an increment
- We arrive at a final product release through a sequence of iterations
- · Iterations contain workflows
- · Iterations are organised into phases

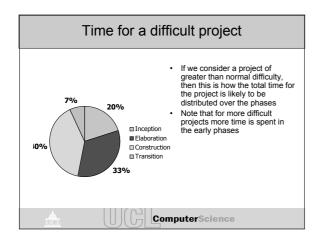
ComputerScience

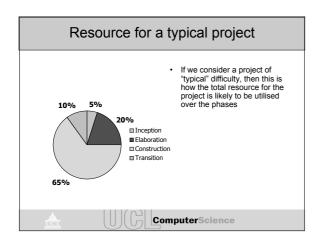

Increments

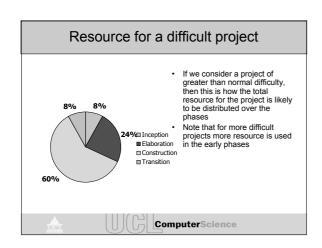

- Each iteration generates internal (or external) releases of various artefacts which together constitute a baseline
- A baseline is a set of reviewed and approved artefacts that:
 - Provides an agreed basis for further review and development
 - Can be changed only through a formal procedure such as configuration and change management
- An increment is the difference between the release of one iteration and the release of the next
 - The result of an iteration is an increment

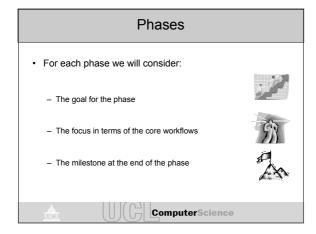


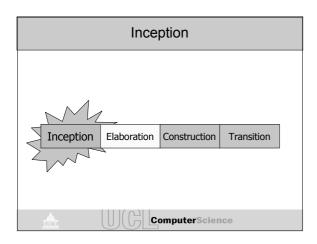

USDP Lifecycle

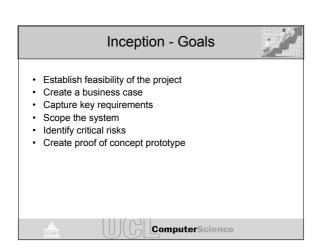

- The USDP lifecycle is divided into a sequence of phases
- Each phase may include many iterations
 - The exact number of iterations per phase depends on the size of the project!
- One iteration per phase for small projects
- Each phase concludes with a major milestone

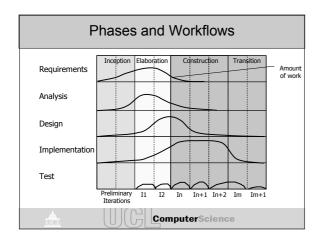


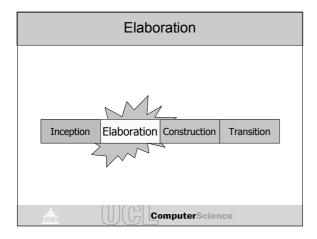






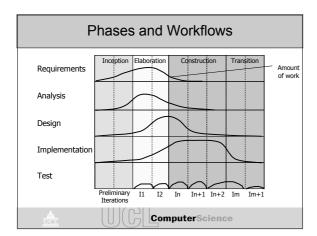






	Inception - Focus
•	Requirements – establish business case, scope and core requirements
•	Analysis – establish feasibility
•	Design – design proof of concept or technical prototypes
•	Implementation – build the proof of concept prototype
•	Test – not generally applicable
N.B. The	blue bars indicate approximately the relative amount of resource needed
<u>UCL</u>	ComputerScience

Conditions of satisfaction: System scope has been defined Key requirements for the system have been captured. These have been defined and agreed with the stakeholders An architectural vision exists. This is just a sketch at this stage A Risk Assessment A Business Case Project feasibility is confirmed The stakeholders agree on the objectives of the project


Elaboration - Goals

- Create an executable architectural baseline
- · Refine Risk Assessment
- Define quality attributes (defect rates etc.)
- Capture use-cases to 80% of the functional requirements
- · Create a detailed plan for the construction phase
- Formulate a bid which includes resources, time, equipment, staff and cost

ComputerScience

How many use-cases?

- Our goal is to find sufficient use-cases to allow us to build a system
- Aim to identify about 80% of the use-cases based on a consideration of functional requirements
 - The other 20% will come out in later phases if important
- Aim to model in detail only about 40% to 80% of the set of identified use-cases
- For each use-case modelled in detail, only a small fraction of the possible scenarios may need to be modelled

Model *just enough* use-cases to capture the information you need!

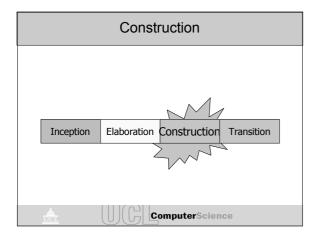
ComputerScience

Elaboration - Focus

- Requirements refine system scope and requirements
- Analysis establish what to build
- Design create a stable architecture
- Implementation build the architectural baseline
- · Test test the architectural baseline

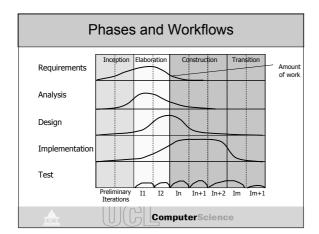
ComputerScience

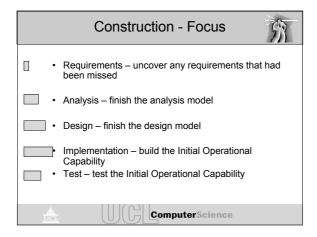
Life Cycle Architecture


- · Conditions of satisfaction:
 - A resilient, robust executable architectural baseline has been created

 The Risk Assessment has been updated

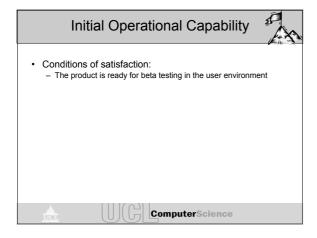
 - A project plan has been created to enable a realistic bid to be formulated
 - The business case has been verified against the plan
 - The stakeholders agree to continue

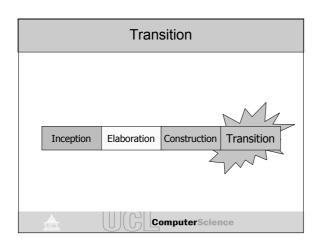

ComputerScience



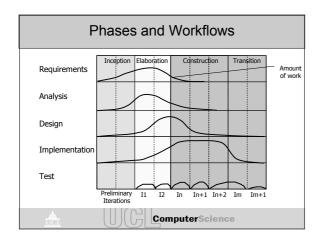
Construction - Goals

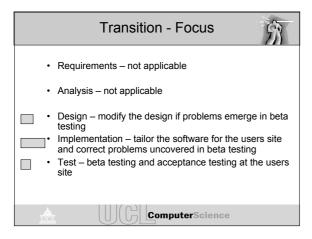
- Completing use-case identification, description and realisation
- Finish analysis, design, implementation and test
- Maintain the integrity of the system architecture
- Revise the Risk Assessment

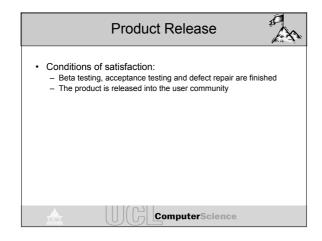









Primary and secondary tasks Primary tasks: Everything that contributes directly to the next increment Secondary tasks: Everything else! Attack risks with behavioural prototypes Solve critical problems with taskforces (tiger teams) Research into problem and solution domains Bug tracking and reporting Computer Science



Vusing Four State iterative and incremental software engineering process for the UML USDP has four phases: Inception Elaboration Construction Transition Each phase may have one or more iterations Each iteration has five iteration workflows Requirements, Analysis, Design, Implementation, Test Computer Science