
1

1

Extreme Programming
(3C05/D22)

2

Unit 6: Extreme Programming

Objectives

– To review extreme programming an alternative software system

development process rapidly gaining in popularity.

3

Extreme Programming

No!



2

4

Extreme Programming (XP)

• A deliberate and disciplined approach to software systems
development

• Developed by Kent Beck
• About 4 years old, increasingly used in both large and

small organisations
• Emphasises communication, feedback simplicity and

above all customer feedback
• A member of a growing family of “lightweight methods”

5

When to Use XP

• Remember you have to match the process to the problem!
• XP works when:

– Requirements are changing rapidly
– High risk, new challenge projects
– Small groups of programmers (between 2-10)
– Able to create automated tests
– Direct customer involvement is possible

6

Rules and Practices of XP

• Planning
– User stories are written
– Release planning creates the schedule
– Make frequent small releases
– The project velocity is measured
– The project is divided into iterations
– Iteration planning starts each iteration
– Move people around
– A stand-up meeting starts each day
– Fix XP when it breaks



3

7

User Stories

• User Stories are written by the customers
• Things that the system needs to do for them (similar to use

cases)
• In the format of about three sentences of text written by the

customer in the customers terminology
– without techno-babble!

• About 80 +- 20 is a typical number for a mid-sized project,
each story between 1 and 3 weeks of ideal development
time

• User stories drive creation of acceptance tests

8

Iterations and Releases

• Release plan sets out overall schedule
• User stories are estimated in terms of effort and then are

written on cards and prioritised by customer
• User stories are then divided into releases by development

team
• Divide development into about 12 iterations of about 1 to 3

weeks in length and have an iteration planning meeting
before each iteration

• Project velocity=number of user stories per iteration
• Release often and aim to deliver a useable, testable

system early

9

Rules and Practices of XP

• Designing
– Simplicity.
– Choose a system metaphor.
– Use CRC cards for design sessions.
– Create spike solutions to reduce risk.
– No functionality is added early.
– Refactor whenever and wherever possible.



4

10

Design

• Never add functionality before it is required!
• Organise your design around a shared model (metaphor).

Work hard to create a simple understandable design.
• A spike solution is a very simple program to explore

potential solutions. Build a system which only addresses
the problem under examination and ignore all other
concerns.

• Refactor mercilessly! Refactoring is the removal of
redundancy, elimination of unused functionality, and
rejuvenation of obsolete designs in order to keep the
design simple and avoid needless clutter. It helps to make
a design easier to understand, modify, and extend.

11

CRC Cards

• CRC cards are a useful tool
– CRC- class, responsibilities, collaborations
– Class at top of card, responsibilities listed down the left side,

collaborating classes listed to the right of each responsibility

• A CRC session proceeds with someone simulating the
system by talking about which objects send messages to
other objects. By stepping through the process
weaknesses and problems are easily uncovered. Design
alternatives can be explored quickly by simulating the
design being proposed.

12

CRC Cards



5

13

Rules and Practices of XP

• Coding
– The customer is always available.
– Code must be written to agreed standards.
– Code the unit test first.
– All code is pair programmed.
– Only one pair integrates code at a time.
– Integrate often.
– Use collective code ownership.
– Leave optimization till last.
– No overtime.

14

Rules and Practices of XP

• Testing
– All code must have unit tests.
– All code must pass all unit tests before it can be released.
– When a bug is found tests are created.
– Acceptance tests are run often and the score is published.

15

Acceptance and Unit Tests

• Create tests first - before the code.
• Use the user stories to drive the creation of acceptance

tests
• Create or use an automated testing framework
• If you find a bug first create a test to stop it coming back

again



6

16

XP Map

17

Other XP Practices

• Rate user stories by risk - do the hard things first!
• Build the model first with a spartan user interface

Add your own practices
XP is not fixed!

18

Key Points

• There are alternatives to standard OO development
processes

• XP works very well in certain situations but IS NOT an
excuse for lack of development discipline, quite the
contrary

• The core of XP is delivering exactly what is wanted now
and regularly refactoring. These practices can be applied in
other settings.


