
1© Wolf gang Emmerich, 1997

Wolfgang Emmerich
Mark Levene

Wolfgang Emmerich
Mark Levene

C340 Concurrency:
Semaphores and Monitors

C340 Concurrency:
Semaphores and Monitors

2© Wolf gang Emmerich, 1997

Revised Lecture PlanRevised Lecture Plan

1 Introduction
2 Modelling Processes
3 Modelling Concurren-

cy in FSP
4 FSP Tutorial
5 LTSA Lab
6 Programming in Java
7 Concurrency in Java
8 Lab: Java Thread

Programming

1 Introduction
2 Modelling Processes
3 Modelling Concurren-

cy in FSP
4 FSP Tutorial
5 LTSA Lab
6 Programming in Java
7 Concurrency in Java
8 Lab: Java Thread

Programming

9 Mutual Exclusion
10 Lab: Synchroniza-

tion in Java
11 Semaphores and

Monitors
12 Conditional Synchro-

nization
13 Fairness & Liveness
14 Safety
15 Tutorial: Model

Checking

9 Mutual Exclusion
10 Lab: Synchroniza-

tion in Java
11 Semaphores and

Monitors
12 Conditional Synchro-

nization
13 Fairness & Liveness
14 Safety
15 Tutorial: Model

Checking

3© Wolf gang Emmerich, 1997

GoalsGoals

n Introduce concepts of
• Semaphores
• Monitors
• Conditional synchronisation

n Relationship to FSP guarded actions
n Implementation in Java

• synchronised methods and private attributes
• single thread active in the monitor at any time
• wait, notify and notifyAll

n Introduce concepts of
• Semaphores
• Monitors
• Conditional synchronisation

n Relationship to FSP guarded actions
n Implementation in Java

• synchronised methods and private attributes
• single thread active in the monitor at any time
• wait, notify and notifyAll

4© Wolf gang Emmerich, 1997

SemaphoresSemaphores

P/Wait/Down:
if (counter > 0)

 counter--

else

add caller to
waiting list

P/Wait/Down:
if (counter > 0)

 counter--

else

add caller to
waiting list

S/Signal/Up:
if (threads wait)

activate waiting
thread

else

 counter++

S/Signal/Up:
if (threads wait)

activate waiting
thread

else

 counter++

n Introduced by Dijkstra’ in 1968
n ADT with counter and waiting list

n Introduced by Dijkstra’ in 1968
n ADT with counter and waiting list

5© Wolf gang Emmerich, 1997

Semaphores and Mutual ExclusionSemaphores and Mutual Exclusion

n One semaphore for each critical section
n Initialize semaphore to 1.
n Embed critical sections in wait/signal pair
n Example in Java:
Semaphore S=new Semaphore(1);

S.down();

<critical section>

S.up();

n One semaphore for each critical section
n Initialize semaphore to 1.
n Embed critical sections in wait/signal pair
n Example in Java:
Semaphore S=new Semaphore(1);

S.down();

<critical section>

S.up();
Demo: Semaphores

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/SemaDemo/SemaDemo.html

6© Wolf gang Emmerich, 1997

Evaluation of SemaphoresEvaluation of Semaphores

+ Nice and simple mechanism
+ Can be efficiently implemented

– Too low level of abstraction
– Unstructured use of signal and wait leads

to spaghetti synchronisation
– Error prone and errors are dangerous

– Omitting signal leads to deadlocks
– Omitting wait leads to safety violations

+ Nice and simple mechanism
+ Can be efficiently implemented

– Too low level of abstraction
– Unstructured use of signal and wait leads

to spaghetti synchronisation
– Error prone and errors are dangerous

– Omitting signal leads to deadlocks
– Omitting wait leads to safety violations

7© Wolf gang Emmerich, 1997

Critical RegionsCritical Regions

n Guarantee mutual exclusion by definition

n Note subtle difference to critical sections

n language features implement critical
regions

n Example: Java synchronised method

n Guarantee mutual exclusion by definition

n Note subtle difference to critical sections

n language features implement critical
regions

n Example: Java synchronised method

8© Wolf gang Emmerich, 1997

MonitorsMonitors

n Hoare’s response to Dijkstra’s semaphores
• Higher-level
• Structured

n Monitors encapsulate data structures that
are not externally accessible

n Mutual exclusive access to data structure
enforced by compiler or language run-time

n Hoare’s response to Dijkstra’s semaphores
• Higher-level
• Structured

n Monitors encapsulate data structures that
are not externally accessible

n Mutual exclusive access to data structure
enforced by compiler or language run-time

9© Wolf gang Emmerich, 1997

Monitors in JavaMonitors in Java

n All instance and class variables need to
be private or protected

n All methods need to be synchronised
n Example: semaphore implementation
n Use of Monitors: Carpark Problem

n All instance and class variables need to
be private or protected

n All methods need to be synchronised
n Example: semaphore implementation
n Use of Monitors: Carpark Problem

10© Wolf gang Emmerich, 1997

Carpark ProblemCarpark Problem

n Only admit cars if carpark is not full
n Cars can only leave if carpark is not

empty
n Car arrival and departure are independent

threads

n Only admit cars if carpark is not full
n Cars can only leave if carpark is not

empty
n Car arrival and departure are independent

threads

Demo: CarPark

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/CarPark/CarPark.html

11© Wolf gang Emmerich, 1997

Carpark ModelCarpark Model

n Events or actions of interest:
• Arrive and depart

n Processes:
• Arrivals, departures and carpark control

n Process and Interaction structure:

n Events or actions of interest:
• Arrive and depart

n Processes:
• Arrivals, departures and carpark control

n Process and Interaction structure:

ARRIVALSARRIVALS
arrivearrive CARPARK

CONTROL
CARPARK
CONTROL

departdepart DEPART-
URES

DEPART-
URES

||CARPARK||CARPARK

12© Wolf gang Emmerich, 1997

Carpark FSP SpecificationCarpark FSP Specification

CARPARKCONTROL(N=4) = SPACES[N],

SPACES[i:0..N] =

 (when(i>0) arrive-> SPACES[i-1]

 |when(i<N) depart-> SPACES[i+1]

).

ARRIVALS = (arrive-> ARRIVALS).

DEPARTURES = (depart-> DEPARTURES).

||CARPARK =

 (ARRIVALS||CARPARKCONTROL||DEPARTURES).

CARPARKCONTROL(N=4) = SPACES[N],

SPACES[i:0..N] =

 (when(i>0) arrive-> SPACES[i-1]

 |when(i<N) depart-> SPACES[i+1]

).

ARRIVALS = (arrive-> ARRIVALS).

DEPARTURES = (depart-> DEPARTURES).

||CARPARK =

 (ARRIVALS||CARPARKCONTROL||DEPARTURES).

LTSA

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/LTSA/LTSA.html

13© Wolf gang Emmerich, 1997

Java Class CarparkJava Class Carpark

public class Carpark extends Applet {
 final static int N=4;
 public void init() {
 CarParkControl cpk = new CarParkControl(N);

 Thread arrival,departures;

 arrivals=new Thread(new Arrivals(cpk));

 departures=new Thread(new Departures(cpk));

 arrivals.start();

 departures.start();

 }

}

public class Carpark extends Applet {
 final static int N=4;
 public void init() {
 CarParkControl cpk = new CarParkControl(N);

 Thread arrival,departures;

 arrivals=new Thread(new Arrivals(cpk));

 departures=new Thread(new Departures(cpk));

 arrivals.start();

 departures.start();

 }

}

14© Wolf gang Emmerich, 1997

Java Classes Arrivals & DeparturesJava Classes Arrivals & Departures

public class Arrivals implements Runnable {

 CarParkControl carpark;

 Arrivals(CarParkControl c) {carpark = c;}

 public void run() {

 while (true) carpark.arrive();

 }

}

class Departures implements Runnable {

 ...

 public void run() {

 while (true) carpark.depart();

}

public class Arrivals implements Runnable {

 CarParkControl carpark;

 Arrivals(CarParkControl c) {carpark = c;}

 public void run() {

 while (true) carpark.arrive();

 }

}

class Departures implements Runnable {

 ...

 public void run() {

 while (true) carpark.depart();

}

15© Wolf gang Emmerich, 1997

Java Class CarParkControl (Monitor)Java Class CarParkControl (Monitor)

class CarParkControl {// synchronisation?
 private int spaces;
 private int N;
 CarParkControl(int capacity) {
 N = capacity;
 spaces = capacity;
 }
 synchronized public void arrive() {
 … -- spaces; … } {// Block if full?
 synchronized public void depart() {
 … ++ spaces; … {// Block if empty?
 }
}

class CarParkControl { // synchronisation?
 private int spaces;
 private int N;
 CarParkControl(int capacity) {
 N = capacity;
 spaces = capacity;
 }
 synchronized public void arrive() {
 … -- spaces; … } { // Block if full?
 synchronized public void depart() {
 … ++ spaces; … { // Block if empty?
 }
}

16© Wolf gang Emmerich, 1997

Problems with CarParkControlProblems with CarParkControl

n How do we send arrivals to sleep if car
park is full?

n How do we awake it if space becomes
available?

n Solution: Condition synchronisation

n How do we send arrivals to sleep if car
park is full?

n How do we awake it if space becomes
available?

n Solution: Condition synchronisation

17© Wolf gang Emmerich, 1997

SummarySummary

n Semaphores
n Monitors
n Next session:

• Java condition synchronization
• Relationship between FSP guarded actions

and condition synchronization
• Fairness and Starvation

n Semaphores
n Monitors
n Next session:

• Java condition synchronization
• Relationship between FSP guarded actions

and condition synchronization
• Fairness and Starvation

