LUCL
C340 Concurrency:
Mutual Exclusion
Wolfgang Emmerich
i, G .
UL oals of this lecture

m Thread interaction via shared memory
m Avoid interference

m Synchronisation

m Mutual exclusive access

-

N

»

© Wolfgang Emmerich, 1998/99

TCL Ornamental Garden Problem

m Garden open to the public
m Enter through either one of two turnstiles
m Computer to count number of visitors

Garden

- West

East)
Turnstile

Turnstile

m Each turnstile implemented by a thread

© Wolfgang Emmerich, 1998/99

éﬂa Ornamental Garden: Counter class

cl ass Counter {
I nt val ue_=0;
public void increnment () {
int tenp = value_; //read
Sinulate.interrupt();
++t enp; / | addl
val ue_=t enp; [Twite

}
}
m Simulated interrupt calls yi el d() to force
thread switch.

© Wolfgang Emmerich, 1998/99

4

i .
@ Ornamental Garden: Turnstile class

class Turnstile extends Thread {
Count er peopl e_;
Turnstile(Counter c) {

people_ = c;
}
public void run() {
whi | e(true)
people .increnment();
}

}

m For full implementation see online version

© Wolfgang Emmerich, 1998/99 5

ﬁ Ornamental Garden: Program

Counter people_ = new Counter();
Turnstile west _ = new Turnstil e(people);
Turnstil e east _ new Turnstil e(people);
west .start();

east .start();

m What will happen?

Demo: Ornamental Garden

© Wolfgang Emmerich, 1998/99

ﬁ FSP Spec of Ornamental Garden

const N=3 range T = 0..N
VAR = VAR 0],
VAR[u: T] = (read[u] -> VAR U]
| wite[v:T]-> VAR V]).
TURNSTI LE = (arrive -> | NCREMENT
| suspend-> resume-> TURNSTI LE),
I NCREMENT = (val .read[x: T] -> val.wite[x+1]->
TURNSTI LE) +{val .read[T],val .write[T]}.
| | GARDEN = (east: TURNSTI LE || west: TURNSTILE
|| {east,west}::val: VAR
)/ {stop/ east. suspend,
st op/ west . suspend,

start/east.start,
LTSA start/west.start}.

© Wolfgang Emmerich, 1998/99

i,
@ Interference

m FSP spec supports the following trace:
east.arrive - east.val.read.0- west.arrive -
west.val.read.0 - east.val.write.1 - west.val.write. 1

m This is an example of a destructive update

m Destructive updates caused by arbitrary

interleaving of read and write actions on
shared variables is called interference

m Avoid interference by making access to
critical sections mutually exclusive

© Wolfgang Emmerich, 1998/99 8

i . .
:{ﬁ_ Critical Section

m A critical section is a sequence of actions
that must be executed by at most one
process or thread at a time

m Can be found by searching for sections of
code that access or update variables or
objects that are shared by concurrent
processes.

© Wolfgang Emmerich, 1998/99

ﬁ Modelling Mutual Exclusion

m A lock can be modelled by:
LOCK = (acquire->rel ease->L0OCK).

m Attaching lock to shared resource (VAR):
| | LOCKVAR = (LOCK || VAR).
m Critical section acquires/releases lock:

| NCREMENT = (val ue.acquire ->
val .read[x: T] -> val .wite[x+1]->
val ue. rel ease -> TURNSTI LE)
+{val .read[T],val .wite[T]}.

© Wolfgang Emmerich, 1998/99 10

i, . . .
@ Critical Sections in Java

m Synchronised methods implement mutual
exclusion

m Implicitly locking objects
cl ass Counter {
int val ue_=0;
public synchronized void increnment() {
int tenp = value_; //read
Simulate.interrupt();

++t enp; /| addl
val ue_=t enp; [lwite
}
} {Demo: Correct Ornamental Garden}

© Wolfgang Emmerich, 1998/99 11

i, . .
@ Synchronised Statements in Java

m Locks on individual objects:

public void run() {
whi | e(true)
synchroni zed(peopl e){
peopl e _.increment();
}

}
m Less elegant than synchronized methods

m More efficient than synchronized methods

© Wolfgang Emmerich, 1998/99 12

i,
TcL Summary

m Interference

m Critical sections

m Mutual Exclusion

m Synchronised methods in Java

m Synchronised statements in Java

© Wolfgang Emmerich, 1998/99

13

