
1

Developing Eclipse Plug-ins*

Wolfgang Emmerich
Professor of Distributed Computing

University College London

http://sse.cs.ucl.ac.uk

* Based on M. Pawlowski et al: Fundamentals of Eclipse
 Plug-in and RCP Development. EclipseCon 2007.

2

Learning Objectives

• Understand how to write new software development

tools and integrate them into the Eclipse platform

• Understand the Eclipse extension mechanisms

• Know how to specify an OSGi manifest

• Be able to develop, test and deploy a plug-in.

3

Any Eclipse product is composed of plug-ins

• A plug-in is the

fundamental building

block of an Eclipse

product

• Plug-ins build on top of

and use other plug-ins

• To extend Eclipse, you

must write plug-ins

• To write a rich client

application, you must

write plug-ins

2

4

A Fundamental Building Block

• A plug-in is a Java Archive (JAR)

• A plug-in is self-contained

– houses the code and resources

that it needs to run

• A plug-in is self-describing

– who it is and what it contributes to

the world

– what it requires from the world

5

A Tale of Two Manifest Files

6

A Mechanism for Extensibility

• Extensibility in Eclipse is achieved via loose coupling

• Plug-in A exposes an extension point (the electric outlet)

• Plug-in B extends plug-in A by providing an extension (the

plug) that fits into plug-in A’s outlet

• Plug-in A knows nothing about plug-in B

3

7

If the Extension Fits…

• So many extension points…

• Each extension point is unique

• Each extension point declares a contract

• The extension point provider accepts only extensions that

abide to the terms of its contract

8

A Declarative Approach

• Extension points and extensions are declared in the plugin.xml file

• The runtime is able to wire extensions to extension points and form an

extension registry using XML markup alone

9

Extensibility in Pictures

4

10

Example of Extensibility

• Plug-ins may contribute
preference pages

• All preference pages are
assembled and categorized
in the Preferences dialog

• How is the Preferences
dialog created?

• How and when is a
particular preference page
created?

11

The Electric Outlet and the Plug

12

Tip of the Iceberg

• Plug-ins are connected without loading any of their code

• Code is loaded only when it is needed

• The lightweight declarative and lazy approach scales well

• An installed plug-in is not necessarily an active plug-in

5

13

A Society of Plug-ins

• An Eclipse product is the sum of

its constituent plug-ins

• Plug-ins are discovered upon

Eclipse startup

• Plug-ins do not know how to play

and interact with each other on

their own

14

An Ordered Society of Plug-ins

• The Eclipse runtime manages all

installed plug-ins and brings order

and collaboration to their society

• A classpath for each plug-in is

dynamically constructed based on

the dependencies declared in its

MANIFEST.MF file

• Every plug-in gets its own class

loader

15

Seamless Integration of Components

6

16

From Genesis to Deployment

17

Plug-in Creation

 The New Plug-in Project creation

wizard generates a project

complete with manifest files and,

optionally, source code

 The wizard also provides

templates for popular extension

points such as action sets, views,

preference pages

 Templates save a lot of time and

allow you to create and run a plug-

in in a few minutes

18

Life in the Workspace

• The internal structure of a plug-in

project in the workspace mirrors

that of a deployed plug-in

• Two notable differences:

The code is in source folders

The plug-in project contains

extra development metadata

that are not part of the

deployed plug-in

7

19

Editing the Plug-in

• The plug-in manifest editor
is the central place to
manage your plug-in

• It provides hot links to
– test and debug plug-ins

– launch relevant wizards

– quick navigation between
source code and the manifest
files

20

Testing the Plug-in

21

Configure the Build Content

• The plug-in project contains

development-time metadata that

should not be part of the

deployed plug-in.

• On the Build page of the plug-in

manifest editor, you check the list

of files and folders that should be

packaged

8

22

Exporting the Plug-in

• The Plug-in Export wizard
packages a plug-in into a
deployable format

• Plug-ins can be exported en
masse

• Plug-ins can be exported as
an archive or as a directory
structure

23

Externalize the Strings

• PDE provides an

Externalize Strings wizard

that extracts translatable

strings and stores them in a

properties file for multi-

language support.

• This allows the plug-in

manifest files to remain

intact, while the properties

files get translated

24

Clean up the Manifests

• As the plug-in evolves, it

may accumulate stale data

• The Organize Manifests

wizard that inspects your

code and manifests and

removes or updates stale

data

9

25

Key Points

• Eclipse products are

composed of plug-ins

• Plug-ins use and provide

extension mechanisms

• Plug-ins make

contributions to all parts of

the UI

• Plug-ins are insulated from

each other through OSGi

26

References

• M. Pawlowski et al: Fundamentals of Eclipse Plug-in

and RCP Development. EclipseCon 2007.
http://eclipsezilla.eclipsecon.org/php/attachment.php?bugid=3645

