
1

Object and Model

Management in SDEs

Wolfgang Emmerich
Professor of Distributed Computing

University College London

http://sse.cs.ucl.ac.uk

2

Learning Objectives

• To learn about the principle data structures handled

by IDEs

• Appreciate the difference between parse trees and

abstract syntax trees

• Understand the design rationales of abstract syntax

trees and graphs

• Lay the foundation for working with the Eclipse JDT

component

3

Key requirement for tools in SDEs

• Assist in editing correct formal language

– Point out syntactic errors

– Highlight static semantic errors

– Inform about inter-document consistency constraints

– Interpret and inspect

• Program editors are

– incremental compilers

– Language run-time environments

• They work on the same data structure as compilers

• Probably need a quick recap…

Demo

2

4

Parse Trees

• A tree that represents the syntactic structure of a
sentence according to a grammar.

• In a parse tree
– Inner nodes represent non-terminal symbols of the

grammar.
– Leave nodes represent terminal symbols of the

grammar.
• Parse trees are generated by the parser component

of a compiler.
• Need to look at an example

5

Example Parse Tree

Given the grammar:

Expr ::= ‘(’ Expr ‘)’

 | Expr ‘&&’ Expr

 | Expr ‘||’ expr

 | ‘!’ Expr

 | Lit .

Lit ::= Var | ‘true’ | ‘false’.

Var ::= [a-z][A-Z0-9_]+ .

Parsing this string:
((looking || true) && !found)

Expr

Var

id=looking

Expr()

Var
id=found

Expr

()

true

Expr

Expr Expr

Expr

||

Expr!

&&

gives:

6

Abstract Syntax Trees

• Parse trees waste a fair amount of space for

representation of terminal symbols and productions.

In practice tools use abstract syntax trees.

• Abstract syntax trees (ASTs) are built by applying

more abstract operators (reflected in inner nodes)

and omitting lexical and structuring nodes that have

no additional meaning.

• Compilers post-process parse trees into ASTs

• ASTs are the fundamental data structure of IDEs

3

7

Abstract Syntax Tree Example

VarRef
id=looking

AndExpr

VarRef

id=found

OrExpr

true

NotExpr

Expr

Var=
looking

Expr()

Var=

found

Expr

()

true

Expr

Expr Expr

Expr

||

Expr!

&&

8

Document Object Model

• A standard of the World-Wide-Web Consortium

• Standardises ASTs of XML documents

• Standardizes the programming interface to

manipulate and traverse these ASTs

• DOM trees can be created by any DOM-compliant

XML parser

• Given the prevalence of XML, DOM is extensively

used in software development environments (and

application servers)

9

Abstract Syntax Graphs

• Problem with ASTs: They do not support static semantic
checks, re-factoring and browsing operations, e.g:
– Have all used variables been declared

– Have all Classes used been imported

– Are the types used in expressions / assignments compatible?

– Navigate to the declaration of method call / variable reference / type

• Abstract Syntax Graphs have additional edges that reflect
semantic relationships, e.g. declare/use

• These edges are maintained during static semantic checks

• Static semantic checks might build upon previously
established ones

• They are used in re-factoring operations (e.g. renaming a
class).

4

10

boolean looking, found;

…

if (looking && !found) {…}

Abstract Syntax Graph Example

VarRef
id=looking

AndExpr

VarRef
id=found

OrExpr NotExpr

IfStmtVarDecl
type=boolean

VarDecl
Type=boolean

VarName
id=looking

VarName

id=found

Block

Block

11

Persistence of ASGs

• In SDE research in the 1990s a lot of emphasis on

how to store ASTs and ASGs persistently in different

forms of databases.

• Today a developer’s workstation has sufficient

memory to hold ASGs, even of very large projects in

main memory.

• Moreover, CPUs are much faster than they were a

decade ago.

• Thus persistence is achieved by storage of artifacts

in the file system.

12

Persistence of ASGs

boolean looking, found;

…

if (looking && !found) {…}

VarRef

id=looking

AndExpr

VarRef
id=found

OrExpr NotExpr

IfStmtVarDecl

type=boolean

VarDecl

Type=boolean

VarName
id=looking

VarName
id=found

Block

Block

p
a

rs
e

u
n

p
a

rs
e

On

file system

In

memory

5

13

Key Points

• Program editors in IDEs

are effectively incremental

compilers

• They work on abstract

syntax trees or graphs as

transient representations

• These are persisted by un-

parsing into the file system

14

References

• A. Aho, R. Sethi and J. Ullman: Compilers. Addison

Wesley. 1977

• M. Nagl (ed): Building Tightly integrated development

environments. LNCS 1170. Springer Verlag. pp 32-

44. http://dx.doi.org/10.1007/BFb0035684. 1996

• V. Apparao et al. Document Object Model. W3C

Recommendation. http://www.w3.org/DOM/DOMTR.

1998

