
1

Principles of integrated

software development

environments

Wolfgang Emmerich
Professor of Distributed Computing

University College London

http://sse.cs.ucl.ac.uk

2

Learning Objectives

• Be able to define the notions of “tool” and

“environment”

• Appreciate why tools and environments are critical in

large-scale software development efforts

• Understand the conceptual building blocks of a

modern development environment

3

Context: Software Process (e.g. USDP or RUP)

Requirements

Analysis

Design

Implementation

Test

Inception Elaboration Construction Transition

I1 I2 In In+1 In+2 Im Im+1Preliminary
Iterations

Amount
of work



2

4

Software Development Artifacts

• While conducting an activity in a software process, developers

produce, modify, review or consume software development

artifacts

• Artifacts document “views” of the software system, e.g.

– What functionality needs to be provided?

– What quality requirements need to be met?

– How is the software system structured into components and classes?

– How are these classes realised?

– How is the software system build from these classes?

– Do they function correctly?

– Does their integration address the functional and quality requirements?

• Large-scale development projects produce 1000s of artifacts

5

Software Development Artifacts (cont’d)

• Artifacts are (mostly) written in formal languages,

e.g.

– Functional requirements in SysML or UML Use case

diagrams

– Non-functional requirements in SLAng

– Design in UML

– Realization in Java, C#, Python or Ruby

– Database schemas and queries in SQL

– Ant or make build definitions

– JUnit tests

– Domain specific languages in Excel for acceptance testing

6

Formal languages demand tool support

• Well studied subject you should all be familiar with.

• Just to remind ourselves

• Formal languages

– Have a context-free syntax

– Have a static semantics

– Might have usage conventions

– Have a dynamic semantics

• Developers need tool support to write artifacts in

formal languages (editors / compilers / checkers).



3

7

Software Development Tools

• A software development tool is a software system that assists

a software developer in creating, reviewing, analyzing,

transforming or executing one or several software artifacts.

• Tools are language sensitive / syntax-directed

• Examples:

– UML tool

– Eclipse

– X86 Assembler

– Ant

– C++/Java/C# Compiler

– Java Virtual Machine / Common Language Runtime

– Lint

8

The need for tool integration

• In addition to static semantic constraints, artifacts often have

inter-document consistency constraints

• For example:

– A use case is elaborated in an interaction diagram.

– A UML class and a Java class need to have the same names

– A JavaBean class is refined in a table of a SQL schema

– A JUnit test references the Java class under test

– An ant build file refers to a number of Java classes by name

• Maintaining these consistency constraints manually in large-

scale projects is prohibitively expensive.

• Requires tool integration

9

Integrated Software Development Environments

• An integrated software development environment

(IDE) contains a number of software development

tools. These tools are integrated and may have a

common UI look-and-feel, work jointly on artifacts

and enable team collaboration.

• Examples:

– Eclipse

– Microsoft Visual Studio

– Netbeans

– Rational Rose



4

10

Reference Models/Architectures for IDEs

• In this course we will review the principles of how

IDEs are assembled

• This of course has been done before

• Reference models & architectures for software

engineering environments, IPSEs and IDEs

– ECMA TR/55 (The “toaster” model)

– IPSEN

– Eclipse

11

ECMA Reference Model

12

IPSEN Architecture



5

13

Eclipse Platform

Platform

Java Development Tools

Plug-in Development Environment

UI

Core

Workbench

JFace

SWT

Workbench

Runtime

14

Key points

• Developers need tool

support to cope with

complex development

projects

• Tools are frequently

syntax-directed

• Tool integration creates

development environments

15

References

• M. Nagl (ed): Building Tightly integrated development

environments. LNCS 1170. Springer Verlag. pp 32-

44. http://dx.doi.org/10.1007/BFb0035684. 1996

• Reference Model for Frameworks of Software

Engineering Environments. Edition 3 of ECMA

TR/55. http://hissa.nist.gov/sp.500-211.ps

• E. Gamma and K. Beck. Contributing to Eclipse.

Pearson. 2004 pp.1-7.


