
1

Unit Testing Tools

Wolfgang Emmerich
Professor of Distributed Computing

University College London

http://sse.cs.ucl.ac.uk

2

Context

Requirements

Analysis

Design

Implementation

Test

Inception Elaboration Construction Transition

I1 I2 In In+1 In+2 ImPreliminary
Iterations

3

Learning Objectives

• To be aware of the spectrum of functionality provided

by unit testing tools

• To be able to define unit tests

• To be able to measure the quality of unit tests using

coverage analysis

• To be able to execute unit tests in a fully automated

fashion both inside and outside an IDE

2

4

Reminder: What is unit testing?

• Modern software production uses modular languages

• Modules may take different forms, e.g.

– Java / C# / C++ classes

– Servlets and Server Pages,

– OSGi Bundles or

– Components / Beans / Enterprise Beans

• Integration is considerably simplified if quality of

modules is established beforehand

• This is done by unit testing

• Involves mundane tasks that should be automated

5

Requirements for Unit Testing Tools

• Definition and Execution of Unit Tests, even if

– Unit code not yet available (agile test-driven development)

– Units it depends on are not yet available

• Execution of unit tests

– Single tests

– Suites of a number of unit tests

– Interactively

– In an automated manner

• Summary and visualization of unit test results

• Analysis of quality of unit tests - how well does a test
suite exercise the unit under test?

6

De-facto standard: JUnit

• JUnit was developed to unit test Eclipse

• Emerged from Sunit for unit testing Smalltalk classes

• Large number of derivatives:

– Nunit (for .NET development)

– DBUnit (for testing DB applications)

– Httpunit (for testing web applications)

– …

• Principle idea:

– Define tests as methods in a test class

– Define suites of tests in packages

– Provide assertion framework to specify expected results

– Provide run-time infrastructure to automate the tests

3

7

JUnit Support in Eclipse: Test Definition

• Wizards for creating test

cases of both JUnit3 and

JUnit4

• JUnit test cases are

methods in Java

• Use JUnit assertion

framework which is yet

another class.

• To define the test case

just use the JDT

program editor

8

JUnit support in Eclipse: Test Execution

• Eclipse provides Junit

execution environment for

– Classes

– Packages

• Visualizes test case

execution results

• Drill-down to obtain

assertion failures and

exception details

• Supports navigation to failed

test cases

9

Using JUnit with ant

• Might want to automate unit test suites for execution
outside IDE (because they might take too long)

• Ant build.xml file:
 <property name="junit.output.dir" value="junit"/>
 <target name="junit">
 <mkdir dir="${junit.output.dir}"/>
 <junit fork="yes" printsummary="withOutAndErr">

 <formatter type="xml"/>
 <test name="uk.ac.ucl.cs.sse.test.Stack.StackTest”
 todir="${junit.output.dir}"/>
 <classpath refid="StackTest.classpath"/>
 </junit>
 </target>

4

10

Formatting JUnit reports with ant

• Junit produces text or XML output

• XML can be translated using an XSL stylesheet

• Use the following ant target in your build.xml file
 <target name="junitreport" depends="junit">

 <junitreport todir="${junit.output.dir}">

 <fileset dir="${junit.output.dir}">

 <include name="TEST-*.xml"/>

 </fileset>

 <report format="frames”

 todir="${junit.output.dir}"/>

 </junitreport>

 </target>

11

Mock Components

• Unit tests should test just the unit under test and not

other units it depends on

• Requires replacing those units

• Can be mundane if classes have large number of

dependencies

• Mock frameworks support the systematic

replacement of dependencies without writing any

code through use of reflection

12

Top-Down white-box testing

• Consider the following design:

• How to test Publisher without also building

Subscriber?

– Assertions need to be formulated on Subscriber

– Subscriber code needs to exist

Publisher Subscriber
+add()

+publish()
+receive()

1 0..*

5

13

Using Reflection and Mock Objects

• Basic Idea:

– Create mock objects for all classes that a class is

dependent on

– Use reflection to avoid having to code it

– Express assertions in temporal logic based on features

exhibited at the interface.

• Example:

– JMock (http://www.jmock.org)

14

JMock example

public vvoid testNoSubscriberReceivesMessage(){
 Mockery context = nnew Mockery();

 ffinal ISubscriber subscriber=context.mock(ISubscriber.cclass);

 // set up expectations
 context.checking(nnew Expectations(){{
 never (subscriber).receive("message");

 }});

 // execute
 publisher.publish("message");

 // check expectations are met

 context.assertIsSatisfied();
}

15

Test Driven Development with JUnit and JMock

StubPublisher

+add()
+publish()

<<interface>>
IPublisher

<<interface>>
ISubscriber

Static design

JMockTestCase

PublisherTest

+test1()
+test2()

Behavioural

design

Publisher

+add()
+publish()

Implementation

6

16

Reminder: Coverage Analysis

• White box analysis technique to validate quality of
unit tests

• Complementary to Cyclomatic complexity analysis
(which determines the maximum number of tests
required)

• Different forms

– Statement

– Branch

– def/use

– Method

– type coverage

17

Coverage Analysis with Emma

• Supports analysis of

coverage

• Visualizes which

instructions have been

covered (green) and

which have not (red)

• Provides statistics

• Supports navigation

18

How Tools Perform Coverage Analysis in Java

• Dynamic analysis technique

• Instrument byte code

• To write details of executed

– Instructions

– Methods

– Classes etc

to file

• After execution analyze file

• Visualize results

.class .class

Original

byte code

Instrumented

byte code

Coverage

Instrumentation

Coverage

data

Coverage

Visualizer

7

19

Key Points

• Unit testing needs to be
automated

• Unit tests are written using
programming languages

• Execution within or outside
IDE

• Mocking supports isolation
of units under test

• Coverage analyzers
provide feedback on quality
of unit tests

20

References

• Kent Beck. JUnit Pocket Guide. O'Reilly, 2004. ISBN
0-596-00743-4.

• A. Watson and T. McCabe: Structured Testing: A

Testing Methodology Using the Cyclomatic

Complexity Metric. NIST Special Publication 500-

235. http://www.mccabe.com/pdf/nist235r.pdf

• S. Freeman et al.: Mock Roles, not Objects. Proc.
OOPSLA 2004. DOI: 10.1145/1028664.1028765

• Emma. http://emma.sourceforge.net/

• EclEmma http://www.eclemma.org/

