
1

Program Editors

Wolfgang Emmerich
Professor of Distributed Computing

University College London

http://sse.cs.ucl.ac.uk

2

Learning Objectives

• Understand the principle requirements for program

editors:

– Language-sensitive editing

– Static semantic constraints

– Automated completions

– Browsing support

– Documentation aid

– Refactoring support

• Appreciate how program editors in common IDEs

meet these requirements

3

Usability, usability, usability

Overarching requirement:

• Increase programmer productivity

• Fundamental difficulty faced by every programmer -

express yourself in a formal language

• Awareness of the syntax and semantics of the

programming language(s) in use

• Support, but don’t get in the way

• Highlight errors - but don’t prevent them

None of this is sufficiently achieved by vi or emacs!!



2

4

Language-sensitive editing

• Syntax-directed editing, but turned out to be too

restrictive - some programmers still like it for verbose

constructs, e.g.

– “surround with try/catch clause”

• Incremental parsing on-the-fly

• Temporal tolerance of syntax errors

• Highlighting of syntax errors

• Detailed error reports

• Pretty printing and automatic indentation

• Commenting / uncommenting

5

Supporting static-semantic correctness

• Visualising static-semantic errors, e.g.

– Scoping errors

– Typing errors

– Uncaught exceptions

– Unused declarations

– Uninitialized variables

– Unreachable statements

• Consistency constraints between different artifacts

– Within the same language (e.g. import statements in Java)

– Across languages e.g.

• Java statements in HTML code of Java Server Pages

• Compliance between XML documents and their schemas

6

Auto-completion

• Most modern programming languages have complex

scoping rules

• Pro-active editing support in the presence of static

semantic constraints

• Suggestions of possible completions

– Methods to call

– Types to use

– Variable references

• Automatic generation of imports



3

7

Browsing support

Aim: Support navigation in complex source code

• Locate declarations and references of

– Classes

– Variables

– Methods

• Bookmark important source code locations

• Outline class overview and inheritance hierarchy

• Keep track of traversal history and allow going
backward and forward (required when trying to
understand complex interactions between more than
one classes)

8

Refactoring Support

• Code eventually deteriorates

• Refactoring is required for example to

– Rename declarations

– Reorganise inheritance hierarchies

– Relocate methods or fields into other classes

– Change the visibility of fields

• Program editors can aide these significant changes

and perform them fully automatically

9

Workflow management

• To-Do-Lists

– May be compiled from in-lined comments

– In-lined comments may be generated by the editor intself

• Unresolved errors and warnings

• Tests that have not yet passed

• Integrated with browsing capabilities of the editor



4

10

Documentation Support

• Prevaling documentation style: literate programming

• Generation of documentation headers for artifacts

and individual program fragments

– Extraction of parameters

– Extraction of return types

• Integration with templating and documentation

engines (e.g. Java Doc)

• API Documentation preview

11

Integration Requirements

Editing programs is not done in isolation

• Testing tools (e.g. Unit testers, coverage analyzers)

• Debuggers

• Metrics tools

• Version and configuration management tools

• Build tools

• Database connectors

• Application servers

• Browsers

12

Key Points

• Modern program editors

substantially increase

productivity of

programmers

• Achieved through

– Language-sensitivity

– Automation of mundane

tasks

– Integration with other

development tools



5

13

References

• D. Carlson. Eclipse Distilled. Pearson. 2005

• S. Dart et al. Software Development Environments.

IEEE Computer 20(11):18-28. 1987

• N. Habermann and D. Notkin. Gandalf: Software

Developement Environments. IEEE Transactions on

Software Engineering. SE-12(12):1117-1127. 1986

• D. Knuth. Literate Programming. The Computer

Journal 27(2):97-111. 1984


