
1

1© Wolfgang Emmerich, 1997

Trading

2© Wolfgang Emmerich, 1997

Motivation

n Locating objects in location transparent way
n Naming simple but may not be suitable when

• clients do not know server
• there are multiple servers to choose from

n Trading supports locating servers based on
service functionality and quality

n Naming ↔ White pages
n Trading ↔ Yellow Pages

2

3© Wolfgang Emmerich, 1997

Trading Characteristics

n Trader operates as broker between client and
server.

n Enables client to change perspective from
´who?´ to ´what?´

n Similar ideas in:
• mortgage broker
• insurance broker
• stock brokerage

Exporter

Trader

Importer

1:e
xp

or
t

2:query

3:invoke

4© Wolfgang Emmerich, 1997

Trading Characteristics

n Common language between client and
server:
• Service types
• Qualities of service

n Server registers service with trader.
n Server defines assured quality of service:

• Static QoS definition
• Dynamic QoS definition.

3

5© Wolfgang Emmerich, 1997

Trading Characteristics

n Clients ask trader for
• a service of a certain type
• at a certain level of quality

n Trader supports
• service matching
• service shopping

6© Wolfgang Emmerich, 1997

Trader

Video-on-
demand
provider

MGM

Warner
User

Server

Example

n Hongkong Telecom video-on-demand
server:

Independent

4

7© Wolfgang Emmerich, 1997

The Trading Process

n Example: Video-on-demand server
:Client :Trader MGM:VoDS Warner:VoDS

query()
export()

export()

download()
modify()

8© Wolfgang Emmerich, 1997

Service Type Definition

n Service types define
• Functionality provided by a service and
• Qualities of Service (QoS) provision.

n Functionality defined by object type
n QoS defined based on properties, i.e.

• property name
• property type
• property value
• property mode

– mandatory/optional
– readonly/modifiable

5

9© Wolfgang Emmerich, 1997

Service Type Example

typedef enum {VGA,SVGA,XGA} Resolution;
service video_on_demand {
 interface VideoServer;
 readonly mandatory property float fee;
 readonly mandatory property Resolution res;
 optional mandatory property float bandwidth;
}

10© Wolfgang Emmerich, 1997

Service Type Hierarchy

n An object type might have several
implementations with different QoS.

n Same object type might be used in
different service types.

n Service type S is subtype of service S’ iff
• object type of S is identical or subtype of

object type of S’
• S has at least all properties defined for S’

n Subtype relationship can be exploited by
trader for service matching purposes

6

11© Wolfgang Emmerich, 1997

Constraint Definition

n Importer defines the desired qualities of
service as part of the query:

n Example:
fee<10 AND res >=SGA AND bandwidth>=256

n In a query, trader matches only those
offers that meet the constraint

12© Wolfgang Emmerich, 1997

Trading Policies

n Depending on constraint and available
services, a large set of offer might be
returned by a query.

n Trading policies are used to restrict the
size of the matched offers
• Specification of an upper limit
• Restriction on service replacements
• Restriction on modifiable properties (these

might change between match making and
service requests)

7

13© Wolfgang Emmerich, 1997

Federated Traders

n Scalability demands federation of traders
n A trader participating in a federation

• offers the services it knows about to other
traders

• forwards queries it cannot satisfy to other
traders

n Problems
• Non-termination of import
• Duplication of matched offers

14© Wolfgang Emmerich, 1997

Trading Graph

T1

T2 T3

T4

query.hop_count=4

def_follow_policy=always

max_hop_count=5

query.hop_count=0Service Offer
Trader Attribute
Link

max_hop_count=1

8

15© Wolfgang Emmerich, 1997

CORBA Trading Service

Application
 Objects

CORBA
facilities

CORBAservices

Domain
Interfaces

Object Request Broker

Object
Trader

16© Wolfgang Emmerich, 1997

Defining Quality of Service

typedef Istring PropertyName;
typedef sequence<PropertyName> PropertyNameSeq;
typedef any PropertyValue;
struct Property {
 PropertyName name;
 PropertyValue value;
};
typedef sequence<Property> PropertySeq;
enum HowManyProps {none, some, all}
union SpecifiedProps switch (HowManyProps) {
 case some : PropertyNameSeq prop_names;
};

9

17© Wolfgang Emmerich, 1997

Trader Interface for Exporters

interface Register {
 OfferId export(in Object reference,
 in ServiceTypeName type,
 in PropertySeq properties)
 raises(...);
 OfferId withdraw(in OfferId id)
 raises(...);

 void modify(in OfferId id,
 in PropertyNameSeq del_list,
 in PropertySeq modify_list)
 raises (...);
};

18© Wolfgang Emmerich, 1997

Trader Interface for Importers

interface Lookup {
 void query(in ServiceTypeName type,
 in Constraint const,
 in Preference pref,
 in PolicySeq policies,
 in SpecifiedProps desired_props,
 in unsigned long how_many,
 out OfferSeq offers,
 out OfferIterator offer_itr,
 out PolicyNameSeq Limits_applied)
 raises (...);
};

