
1

1© Wolfgang Emmerich, 1997

Principles of
Distribution Middleware

2© Wolfgang Emmerich, 1997

What is Middleware?

n Layered between Application and
OS/Network

nMakes distribution transparent
n Resolves heterogeneity of

• Hardware
• Operating Systems
• Networks
• Programming Languages

n Provides development and run-time
environment for distributed systems.

2

3© Wolfgang Emmerich, 1997

Categories of Middleware

nMessage-Oriented Middleware
• IBM MQSeries
• DEC Message Queue
• NCR TopEnd

n Transaction-Processing Middleware
• IBM CICS
• BEA Tuxedo
• Encina

n Object-Oriented Middleware
• OMG/CORBA
• DCOM
• Java/RMI

n These are converging! We focus on OO.

4© Wolfgang Emmerich, 1997

Physical

Application

Presentation

Session

Transport

Network

Data link

ISO/OSI Reference Model

3

5© Wolfgang Emmerich, 1997

Physical

Application

Presentation

Session

Transport

Network

Data link

Transport Layer

n Level 4 of ISO/OSI
reference model.

n Concerned with the
transport of
information through a
network.

n Two facets in UNIX
networks:
• TCP and
• UDP.

6© Wolfgang Emmerich, 1997

Transmission Control Protocol (TCP)

n Provides bi-directional stream of bytes
between two distributed components.

n UNIX rsh, rcp and rlogin are based on
TCP.

n Reliable but slow protocol.
n Buffering at both sides de-couples

computation speeds.

4

7© Wolfgang Emmerich, 1997

User Datagram Protocol (UDP)

n Enables a component to pass a message
containing a sequence of bytes to another
component.

n Other component is identified within
message.

n Unreliable but very fast protocol.
n Restricted message length.
n Queing at receiver.
n UNIX rwho command is UDP based.

8© Wolfgang Emmerich, 1997

Physical

Application

Presentation

Session

Transport

Network

Data link

ISO/OSI Presentation Layer

n At application layer:
complex data types

n How to transmit
complex values
through transport
layer?

n Presentation layer
issues:
• Complex data

structures and
• Heterogeneity.

5

9© Wolfgang Emmerich, 1997

class Person {
 private:
 int dob;
 char * name;
 public:
 char * marshal() {
 char * msg;
 msg=new char[strlen(name)+10];
 sprintf(msg,”%d,%s,%d”, dob,
 strlen(name),name);
 return(msg);
 };
};

Complex Data Structures

n Marshalling:
Disassemble data
structures into
transmittable form

n Unmarshalling:
Reassemble the
complex data
structure.

10© Wolfgang Emmerich, 1997

Type Safety

n How can we make sure that
• servers are able to perform operations

requested by clients?
• actual parameters provided by clients match

the expected parameters of the server?
• results provided by the server match the

expectations of client?
nMiddleware acts as mediator between

client and server to ensure type safety.
n Achieved by interface definition in an

agreed language.

6

11© Wolfgang Emmerich, 1997

Interface
Definition

Facilitating Type Safety

ServerClient

Request

Reply

12© Wolfgang Emmerich, 1997

Stubs

n Creating code for marshalling and
unmarshalling is tedious and error-prone.

n Code can be generated fully automatically
from interface definition.

n Code is embedded in stubs for client and
server.

n Client stub represents server for client,
Server stub represents client for server.

n Stubs achieve type safety.
n Stubs also perform synchronization.

7

13© Wolfgang Emmerich, 1997

Local Call vs. Remote Request

Called

Stub
Stub

Caller

Called

Caller
Caller

Transport Layer (e.g. TCP or UDP)

14© Wolfgang Emmerich, 1997

Synchronization

n Goal: achieve similar synchronization to
local method invocation

n Achieved by stubs:
• Client stub sends request and waits until

server finishes
• Server stub waits for requests and calls

server when request arrives

8

15© Wolfgang Emmerich, 1997

Facilitating Access Transparency

n Client stubs have the same operations as
server objects

n Hence, clients can
• make local call to client stub
• or local call to server object
without changing the call.

nMiddleware can accelerate
communication if objects are local by not
using the stub.

16© Wolfgang Emmerich, 1997

Facilitating Location Transparency

n Object identity
n Object references
n Client requests operation from server

object identified by object reference
n No information about physical location of

server necessary
n How to obtain object references?

9

17© Wolfgang Emmerich, 1997

Higher-level Services

n Facilitate higher levels of transparency
n Are distributed objects, too.

• Location Services provide object references
– Naming
– Trading

• Lifecycle Service
• Replication Service
• Concurrency Control Service
• Transaction Service
• Management Service and others…

