
Generating Massive Amount of Generating Massive Amount of

HighHigh--Quality Random Numbers using GPUQuality Random Numbers using GPU

Wai-Man Pang, Tien-Tsin Wong, Pheng-Ann Heng

The Computer Science and Engineering Department
The Chinese University of Hong Kong

IEEE WCCI CIGPU 2008

PseudoPseudo--random number generator random number generator

(PRNG)(PRNG)

�� Provide uniform random numbersProvide uniform random numbers

�� Example : rand() in CExample : rand() in C

�� Important for stochastic algorithms Important for stochastic algorithms

�� Evolutionary ComputingEvolutionary Computing

�� PhotonPhoton--mapping renderingmapping rendering

�� Huge AmountHuge Amount

�� SpeedSpeed

�� QualityQuality

�� Poor randomness Poor randomness →→ slow convergenceslow convergence

PRNG for Stochastic RenderingPRNG for Stochastic Rendering

�� Artifact for poor quality PRNGArtifact for poor quality PRNG

PRNG for Stochastic RenderingPRNG for Stochastic Rendering

�� From High quality PRNGFrom High quality PRNG

Some common PRNGSome common PRNG

�� linear linear congruentialcongruential generator (LCG)generator (LCG)

�� RRn+1n+1= = aRaRnn+ b (mod m)+ b (mod m)

�� lagged Fibonacci generatorlagged Fibonacci generator

�� RRnn= = RRnn--jj ## RRn+kn+k (mod m) (where # is a binary (mod m) (where # is a binary

operator) operator)

�� High precision integer arithmeticHigh precision integer arithmetic

�� Cannot fit in all GPUCannot fit in all GPU

PRNG on GPUPRNG on GPU

�� Cellular AutomataCellular Automata--based PRNG [based PRNG [Wolfram]

�� No high precision integer No high precision integer arithmeticsarithmetics

�� Homogeneous cell operation and Homogeneous cell operation and

connectivityconnectivity

�� Quality Quality

�� Configure to produce high quality random Configure to produce high quality random

sequencesequence

CACA--based PRNGbased PRNG

�� Array of connected Array of connected cells cells

with homogeneous behaviorwith homogeneous behavior

�� Each Cell have a state and Each Cell have a state and

a common cell equationa common cell equation

�� Cell Equation :Cell Equation :

…

2 0 14 … 18
Previous state

values

from neighbors

Φ(X)

Output state value

ci

MechanismMechanism
�� 4 Cell, Connectivity (4 Cell, Connectivity (--1,2)1,2)

�� Cell Equation : step(1, 3Cell Equation : step(1, 3-- c1c1-- 2*c2) 2*c2)

0 101

A B C D

Cell C: 0Cell D: 1

-

A

Step(1, 3- 1 – 2*0)1

Mechanism (contMechanism (cont’’))

random number generated

111
1 101

A B C D

random number generated

0111 100

A B C D

GPU Implementation IssueGPU Implementation Issue

�� Cell resembles Cell resembles texeltexel in GPUin GPU

�� 64 cells and 4 connected CA PRNG for 3264 cells and 4 connected CA PRNG for 32--bits bits
random numberrandom number

�� Cell equation evaluationCell equation evaluation
�� Fast table lookupFast table lookup

�� 4 4 connectivitiesconnectivities = 4 input, 2= 4 input, 244 = 16 possible output= 16 possible output

�� Reorganize bitsReorganize bits
�� Bits in a random number is scattered among Bits in a random number is scattered among texelstexels

�� Output floating point value Output floating point value ff

�� rrii is the is the ii--thth bit in the random numberbit in the random number

()()() 2/......2/2/
3110

rrrf +++=

ShaderShader CodeCode
float4 caprng(in half2 coords: TEX0,in const uniform samplerRECT cells): COLOR0
{

float2 Connector; float4 newState; float4 neigborStates[4]; int i;
for (i = 0 ; i < 4; i++)
{

Connector.x = fmod(coords.x -connectivity(i),CA SIZE);
Connector.y = coords.y;
neigborStates[i] = round(texRECT(cells,Connector));

} // cell equation evaluation
newState.x = celleqn(neigborStates);
return newState;

}

float4 pack(in half2 index : TEX0, in const uniform samplerRECT cells): COLOR0
{ int i; float4 outbits; float4 states; float2 texindex; outbits = 0;

// packing all 32 bits
for (i = 0 ; i < 32 ; i++)
{

texindex.x = i*2+1;
texindex.y = index.y;
states = texRECT(cells, texindex);
outbits += states;
outbits /= 2;

}return outbits;
}

Parallelized PRNGParallelized PRNG
�� Fully utilize 4096 Fully utilize 4096 ××4096 4096 texelstexels (7800GTX)(7800GTX)

�� Each cell occupies single bit in Each cell occupies single bit in texeltexel

�� Why not pack more inside each Why not pack more inside each texeltexel ??
�� Fully utilize the mantissa part of the Fully utilize the mantissa part of the texeltexel

�� 23 23 ×× 4 random sequences simultaneously.4 random sequences simultaneously.

�� Combine 2 schemes : 64Combine 2 schemes : 64××40964096××92 92 PRNGsPRNGs

1 1 0 0

0 1 1 0

0 1 0 1

PRNG1:

PRNG2:

PRNG3:

1

TEX0

0

TEX2

1

TEX1

0

TEX3

1 0 0

TEX0

0 1 0

TEX2

1 1 1

TEX1

0 0 1

TEX3

……

0

TEX4

1

TEX6

1

TEX5

0

TEX7

0

TEX8

0

TEX10

1

TEX9

1

TEX11

Cells Texture

……

Cells Texture

Optimize for QualityOptimize for Quality

�� Genetic Algorithm Genetic Algorithm
�� CA base PRNG configuration with best qualityCA base PRNG configuration with best quality

�� Initialize candidatesInitialize candidates
�� Encoded cell equation and Encoded cell equation and connectivitiesconnectivities

�� 22nn + n bits + n bits

�� Evaluate candidates by objective functionEvaluate candidates by objective function

�� Generate next generationGenerate next generation
�� CrossoverCrossover

�� MutationMutation

�� Repeat until excess certain thresholdRepeat until excess certain threshold

Objective FunctionObjective Function

�� Objective functionObjective function

objective = w0 × e + w1 × ϕ

�� wwii is the weightingis the weighting

�� ee is the nis the n--bit entropy bit entropy

� ϕ is the result of Diehard test

Objective Function (contObjective Function (cont’’))

�� Diehard testDiehard test
�� 14 tests (e.g. birthday spacing, GDC test, etc.)14 tests (e.g. birthday spacing, GDC test, etc.)

�� ChiChi--squaresquare

�� Overall pOverall p--valuevalue
�� ChiChi--square test on all psquare test on all p--values with Gaussian distributionvalues with Gaussian distribution

�� Best 4 connected, 64 Cells CA PRNGBest 4 connected, 64 Cells CA PRNG
�� Connectivity (56,2,21,49) Connectivity (56,2,21,49)

�� Cell equation in tightly packed format Cell equation in tightly packed format
(1001100110100101)(1001100110100101)

ConvergenceConvergence

Control

10,000 photons

Generation 1

e=0.2673 ϕ =0.0

Generation 2

e=0.5852 ϕ =0.0

Generation 4

e=0.5944 ϕ =0.0

Generation 8

e=0.9464 ϕ =0.143

Generation 11

e=0.9514 ϕ =0.3513

PerformancePerformance

�� Performance compare with CPUPerformance compare with CPU

�� Single PRNGSingle PRNG

�� 1,000 Parallel PRNG1,000 Parallel PRNG

0.004s0.064s1,000

0.042s0.942s10,000

0.391s10.081s100,000

4.163s100.082s1,000,000

Software CA-

PRNG

GPU CA-PRNGRandom numbers

generated

0.043s0.004s10,000

0.425s0.031s100,000

4.274s0.31s1,000,000

43.003s3.098s10,000,000

430s31.875s100,000,000

Software CA-

PRNG

GPU CA-PRNGRandom numbers

generated

ConclusionConclusion

�� CA architecture PRNG is highly suitable CA architecture PRNG is highly suitable
for GPUfor GPU

�� Parallel PRNG on GPUParallel PRNG on GPU

�� Optimization for qualityOptimization for quality

�� A high quality and high performance gainA high quality and high performance gain

�� Future worksFuture works
�� Support of variable precision random Support of variable precision random

sequencesequence

�� Experiment with Evolution Computing Experiment with Evolution Computing
applications applications

EndEnd

Thanks for your attentionThanks for your attention

�� Reference : Reference :
�� ""ImplementatingImplementating HighHigh--Quality PRNG on GPU",Quality PRNG on GPU",

W. M. Pang, T. T. Wong and P. A. W. M. Pang, T. T. Wong and P. A. HengHeng,,

ShaderShader X5: Advanced Rendering Techniques, Edited by W. X5: Advanced Rendering Techniques, Edited by W.

Engel, Charles River Media, 2007, pp. 579Engel, Charles River Media, 2007, pp. 579--590.590.

