Generating Massive Amount of
High-Quality Random Numbers using GPU

Wai-Man Pang, Tien-Tsin Wong, Pheng-Ann Heng

The Computer Science and Engineering Department
The Chinese University of Hong Kong

IEEE WCCI CIGPU 2008

Pseudo-random number generator
(PRNG)

e Provide uniform random numbers
e Example : rand() in C

e Important for stochastic algorithms
e Evolutionary Computing

e Photon-mapping rendering
e Huge Amount
e Speed
e Quality

e Poor randomness — slow convergence

PRNG for Stochastic Rendering

e Artifact for poor quality PRNG

A
e

PRNG for Stochastic Rendering

e From High quality PRNG

i fi
,:._/""

Some common PRNG

e linear congruential generator (LCG)
e R =aR + b (mod m)
e lagged Fibonacci generator

e R.=R, #R,.(mod m) (where # is a binary
operator)

e High precision integer arithmetic
e Cannot fit in all GPU

PRNG on GPU

e Cellular Automata-based PRNG [Wolfram]
e No high precision integer arithmetics
e Homogeneous cell operation and

connectivity

e Quality

e Configure to produce high quality random
seguence

CA-based PRNG

e Array of connected cells
with homogeneous behavior ,,,, g Previous state

values

e Each Cell have a state and | from neighbors
a common cell equation

e Cell Equation :

Output state value

Mechanism
e 4 Cell, Connectivity (-1,2)
e Cell Equation : step(1, 3- c1- 2*c2)

v v vy

—
Lol —1 ° | |

B C

Cell D: 1 Cell C: 0

Step(1, 3- 1 —2%0)

Mechanism (cont’)

random number generated

111

—3 V¥ y

— , : |
—
D

B Cc

A

3 3 ¥
— : :
A B

GPU Implementation Issue

Cell resembles texel in GPU

64 cells and 4 connected CA PRNG for 32-bits
random number

Cell equation evaluation

e Fast table lookup

e 4 connectivities = 4 input, 24 = 16 possible output
Reorganize bits

e Bits in a random number is scattered among texels
e Output floating point value f

f=W(r/2)+1)/2+4..t1,)/2

e r;is the /-th bit in the random number

Shader Code

float4 caprng(in half2 coords: TEXO,in const uniform samplerRECT cells): COLORO
{
float2 Connector; float4 newState; float4 neigborStates[4]; int i;
for (i=0;i<4;i++)
{
Connector.x = fmod(coords.x -connectivity(i),CA SIZE);
Connector.y = coords.y;
neigborStates|i] = round(texRECT(cells,Connector));
} /1 cell equation evaluation
newState.x = cellegn(neigborStates);
return newState;

/

float4 pack(in half2 index : TEXO, in const uniform samplerRECT cells): COLORO
{ inti; float4 outbits; float4 states; float2 texindex; outbits = 0;

// packing all 32 bits

for(i=0;i<32;i++)

{

texindex.x = i*2+1;
texindex.y = index.y;
states = texRECT(cells, texindex);
outbits += states;
outbits /= 2;
Jreturn outbits;

/

Parallelized PRNG

e Fully utilize 4096 x4096 texels (7800GTX)
e Each cell occupies single bit in texel

e Why not pack more inside each texel ?
e Fully utilize the mantissa part of the texel

e 23 x 4 random sequences simultaneously.

e Combine 2 schemes : 64x4096x92 PRNGs

Cells Texture Cells Texture

000D

PRNG1:/1 (10| 0 TEXO TEX1 TEX2 TEX3

S NePH 0 1 1 0 0 1 1 0

TEX4 TEX5 TEX6 TEX7
PRNGS3:

TEX8 TEX9 TEX10 TEX11

Optimize for Quality

e Genetic Algorithm
e CA base PRNG configuration with best quality

e Initialize candidates
e Encoded cell equation and connectivities
e 2" + n bits

e Evaluate candidates by objective function

e Generate next generation
e Crossover
e Mutation

e Repeat until excess certain threshold

Objective Function

e Objective function
objective = w, x e + Wy x @

e w;is the weighting

e ¢ Is the n-bit entropy

e @ Is the result of Diehard test

Objective Function (cont’)

e Diehard test
e 14 tests (e.g. birthday spacing, GDC test, etc.)
e Chi-square

e Overall p-value
o Chi-square test on all p-values with Gaussian distribution

e Best 4 connected, 64 Cells CA PRNG
e Connectivity (56,2,21,49)

e Cell equation in tightly packed format
(1001100110100101)

Convergence

Control Generation 1 Generation 2
10,000 photons e=0.267/3 ¢ =0.0 e=0.5852 @ =0.0

Generation 4 Generation 8 Generation 11
e=0.5944 @ =0.0 e=0.9464 @ =0.143 e=0.9514 @ =0.3513

Performance

e Performance compare with CPU
e Single PRNG
e 1,000 Parallel PRNG

Random numbers GPU CA-PRNG Software CA-
generated PRNG

19,000 0.004s 0.004s
190,000 0.942s 0.6428

1,986:600 100818 3:39 48
19.666:000 106:0888 44.983s

100,000,000 31.8735s 450s

Conclusion

e CA architecture PRNG is highly suitable
for GPU

e Parallel PRNG on GPU
e Optimization for quality
e A high quality and high performance gain

e Future works

e Support of variable precision random
sequence

e Experiment with Evolution Computing
applications

End ﬂ/

J’f'"'“\

Thanks for your{attentlon

e Reference

WM. Pang, T. T. Wong and P. A, rleng,
Shader /5: Advariced Rernidering Techricues, |SelitcleRe) AN
engel, Cnarles River Wedia, 2007, oo, 579-5908

