
Random Numbers on GPUs

W. B. Langdon

Mathematical and Biological Sciences

and Computing and Electronic Systems

CIGPU 2008

W. B. Langdon, Essex 4W. B. Langdon, Essex 4

Introduction

• Artificial Intelligence needs Randomisation

• Implementing randomisation is hard.

• GPU no native support for bit level
operations, long integers etc.

• Widespread fear of GPU implementation of
random numbers.

• Demonstrate GPU can generate billions of
random numbers.

• 400+ speedup v single precision Park-Miller

W. B. Langdon, Essex 5

Need for Random Numbers

• Many Computational Intelligence techniques
need cheap randomisation

– Evolutionary computation: selection and mutation

– Simulated Annealing

– Artificial Neural Networks: random initial

connection weights

– Particle Swarm Optimisation

– Monte Carlo methods, e.g. finance, option pricing

6

Anyone who considers arithmetical methods of

producing random digits is, of course, in a state of sin.

• History of pseudo random numbers (PRNG)
is littered with poor implementations. IBM’s
randu described by Knuth as “really horrible”.

• Still true: bug in SUN’s random.c

• Care needed when choosing random method
Knuth

John von Neumann

W. B. Langdon, Essex 7

Park and Miller

• Park-Miller big study of linear congruent
PRNGs. Fast.

• Suggest “minimal standard” PRNG.

• Uniform integer in 1 to 231

• Mandatory PRNG for proposed internet
error correction standard.

• Requires 46 bits (Mersenne Twister ≈20k).

• 46 bits typically implemented using long int
or double precision. Not available on GPU.

8

Park-Miller

• Next “random” number produced by
multiplying current by 75 then reducing to
range 1 to 231 -2 using modulus %m

• Multiplication produces 46 bit result

• All calculations use integers

intrnd (int& prng) { // 1<=prng<m

int const a = 16807; //ie 7**5

int const m = 2147483647; //ie 2**31-1

prng = (long(prng * a))%m;

}

W. B. Langdon, Essex 9

GPU Park-Miller

• C++ implementation under RapidMind

• GPU float only single precision

• Use Value4f (vector of 4 floats) to store
and pass random numbers.

• 31 bits of Park-Miller broken into 4 bytes.
Each byte stored as float. So no rounding
problems.

• Value4f native GPU data type.

10

exactmul 75 ×Value4f→Value5f

exactmul(float f, float in[4], float out[5]) {

out[0]=0;

for(int i=0;i<4;i++) {

const float t=in[i]*f;

out[i] += t; //Max value 16807+16807×255

out[i+1] = floor(out[i]/256);

out[i] = int(out[i])%256;

}

}

By performing multiplication a byte at a time

calculation can be done with float

11

Parallel RapidMind exactmul

75×Value4f→Value5f
inline void exactmul(const Value1f f, const Value4f in,

Value<5,float>& out) {

//RM_DEBUG_ASSERT(f<= Value1f(16807));

out[0]=0;

for(int i=0;i<4;i++) {

out[i] += round(in[i]*f);

out[i+1] = floor(out[i]/Value1f(256));

out[i] = round(Value1i(out[i])%256);

}

}

round to ensure exact integer values.

multiplication a byte at a time so can be done with float.

12

Value5f used to represent 46 bits
Least

significant bit

Most significant bit

W. B. Langdon, Essex 13

prng = (prng×75)%2147483647

• After exactmul need to reduce modulus
2147483647 but 231-1 can not be
represented exactly by float.

• Replace % by finding largest exact
multiple of 231-1 which does not exceed
prng×75 then subtract it from prng×75.
– Avoids long division

• This gives the next Park-Miller pseudo
random number.

W. B. Langdon, Essex 14

Finding largest multiple of 231-1

not exceeding prng×75

• Find (approx) (prng×75)/(231-1)

• Refine approximation

• Multiply exact divisor by 231-1

• Obtain next PRNG by subtracting exact
multiple of 231-1 from prng×75.

• Multiply and subtraction can be done
exactly (using trick of spliting long integer
into 8-bit bytes and storing these in floats).

15

Finding Largest Divisor 1

• For loop used to decrement approxdiv until
multiM=approxdiv×(231-1) ≤ prng×75

• Mostly only loop only used 1 or 2 times.

Value1i approxdiv = floor(prng*a/m);
Value1i comp = -1; // loop at least once

FOR(nul,comp<0,nul) {
exactmul(Value1f(approxdiv),M,multiM);
comp=comp5(out,multiM); //nb out=a*Prng

approxdiv--;
}ENDFOR

a= 75 M = 231-1

16

Finding Largest Divisor 2

• In case approxdiv was too low the FOR
loop is used to reduce the new PRNG by
repeatedly subtracting 231-1 until it is below
231-1.

exactsub5(out,multiM,Prng); // prng = out-multiM

FOR(nul,comp4(Prng,M)>=0,nul) {

exactsub4(Prng,M,Prng); // prng=prng-m;

}ENDFOR

a= 75 M = 231-1

17

Comp4 using RapidMind
inline Value1i comp4(const Value4f a, const Value4f b) {

return cond(a[3]>b[3],Value1i(+1),

cond(a[3]<b[3],Value1i(-1),

cond(a[2]>b[2],Value1i(+1),

cond(a[2]<b[2],Value1i(-1),

cond(a[1]>b[1],Value1i(+1),

cond(a[1]<b[1],Value1i(-1),

cond(a[0]>b[0],Value1i(+1),

cond(a[0]<b[0],Value1i(-1),Value1i(0)))))))));

}

Use GPU cond to compare most significant parts

of a and b first

18

Exactsub5 using RapidMind
• Operate on local copies of inputs to avoid side

effects on calling code.

• Requires a≥b and a-b fits in 4 bytes

• Subtract B[i] from A[i]. Use round to force integer

• If A[i]<B[i] “borrow” 256 from B[i+1].

• No negative values

//nb a>=b

for(int i=0;i<4;i++) {
B[i+1] = cond(A[i]<B[i],round(B[i+1]+Value1f(1)),B[i+1]);

A[i] = cond(A[i]<B[i],round(A[i]+Value1f(256)),A[i]);
out[i] = round(A[i]-B[i]);

}

//A[5]==B[5]

W. B. Langdon, Essex 19

Validation

• RapidMind GPU and two PC version of
Park-Miller were each validated by
generating at least the first 100 million
numbers in the Park-Miller sequence and
comparing with results in Park and Miller’s
paper and www.

20

Performance v threads

In test environment, with ≥ 8192 threads the 128 stream
processors give peak performance. I.e. ≥16 active

threads per SP. Or ≥512 threads per G80 8SP block.

W. B. Langdon, Essex 21

Performance

• nVidia GeForce 8800 GTX (128 SP)

• 833 106 random numbers/second

• 44 times double precision CPU (2.40Ghz)

• More than 400 times single precision CPU

• Estimate 90 GFlops (17% max 518.4
nVidia claim)

W. B. Langdon, Essex 22

Discussion

• 90GFlops too high?

• Test harness semi-realistic.

• GPU application, PRNG just a small part, but

avoids communication with CPU.

• Main bottle neck is access to GPU’s main

memory.

• PRNG faster if use on-chip memory but

application may want this for other reasons.

• Importance of many threads (min 512).

W. B. Langdon, Essex 23

Conclusions

• Cheap randomisation widely needed but
often poorly implemented.

• Fear of PRNG on GPU (said GPU cant do)

• Park-Miller fast but needs more than float

• GPU implementation meets Park and
Miller’s minimum recommendation.

• RapidMind C++ Code available via ftp.

• Up to 833 million pseudo random numbers
per second.

W. B. Langdon, Essex 24W. B. Langdon, Essex 24

END

W. B. Langdon, Essex 25W. B. Langdon, Essex 25

Questions
• Code via ftp

– http://www.cs.ucl.ac.uk/staff/W.Langdon
/ftp/gp-code/random-numbers/gpu_park-
miller.tar.gz

• gpgpu.org GPgpgpu.com

rapidmind.com

