
T. T. Wong
5 June 2008, CIGPU, WCCI 2008

The Chinese University of Hong Kong

Shader Programming

vs CUDA

Shader Programming

vs CUDA

Tien-Tsin Wong

5 June 2008, CIGPU, WCCI 2008

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

GPGPUGPGPU

• Apply consumer parallel graphics hardware for

general purpose (GP) computing

• GPU almost comes with every PC

• Let’s focus on two approaches:

– Shader programming

– CUDA

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Shader ProgrammingShader Programming

• GPU is not originally designed for GPGPU,

but for graphics

• Shader (program)

• Shading language (specialized language, C-

like)

• A graphics “shell” is needed to perform your

GP program

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Programming as “Drawing”Programming as “Drawing”

• Every program must be a “drawing” even

you draw nothing

• Two dummy

triangles to cover

the screen

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Programming as “Drawing” (2)Programming as “Drawing” (2)

• Then, rasterization (discretization to pixels)

• Each pixel triggers

a shader

shaders

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Pixel as ChromosomePixel as Chromosome

• For EC, it is natural to have each pixel being

a chromosome

• Each shader evaluates the objective function

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

CUDACUDA

• A tailormade platform for GPGPU on GPU

• No dummy graphics “shell”

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

CUDA ArchitectureCUDA Architecture

• shader => kernel

• Shared memory

• Thread synchronization

• Communication!

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Shader vs CUDAShader vs CUDA

• Learning curve:

– Shader: Dummy graphics “shell” needed, and

specialized shading language

=> Longer learning curve for non-graphics people

– CUDA: Just like multi-thread programming,

basically C language

=> easier to catch up for most people

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Shader vs CUDAShader vs CUDA

• Communication among processes:

– Shader: No communication

=> multiple passes, read & write textures for data

sharing

– CUDA: Yes, via shared memory & synchronization

=> less passes, more efficient and flexible

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Shader vs CUDA (2)Shader vs CUDA (2)

• Logical number of instances

– Shader: Strongly coupled with screen resolution

No. of pixels = No. of shader instances

= No. of chromosomes

=> Straightforward problem formulation

– CUDA: Depends on hardware limit

No. of threads < No. of chromosomes

=> Each thread handles multiple chromosomes

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Shader vs CUDA (3)Shader vs CUDA (3)

• Efficiency

• In theory, CUDA should be as efficient as

shader programming

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Shader vs CUDA (4)Shader vs CUDA (4)

• Standardization

– Shader: There are standards

GLSL (OpenGL shading language)

HLSL (MS DirectX high level shading language)

=> cross-platform (can be ATI or nVidia)

– CUDA: Standard is still forming

CUDA is basically supported by vender nVidia,

not sure whether it will be supported by ATI

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Shader vs CUDA (5)Shader vs CUDA (5)

• Access to graphics specific functionalities

• Mipmapping, Cubemap look-up

– Shader: Accessible

=> fast evaluation (lookup) of spherical functions

=> fast downsampling and upsampling

– CUDA: No access

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Debugging ShaderDebugging Shader

• So far, quite limited

• printf-style visual debugging (graphics)

• Microsoft Shader Debugger – MS DirectX

shaders can be debugged

– Shader emulation on CPU, not debugging on

actual GPU

– seldom use as we stick to OpenGL for backward

compatibility

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Debugging Shader (2)Debugging Shader (2)

• NVIDIA Shader Debugger for FX Composer

– recently released in April 2008, as a plugin for FX
composer!? http://developer.nvidia.com/object/shader_debugger_beta.html

• glsldevil, OpenGL GLSL Debugger
http://www.vis.uni-stuttgart.de/glsldevil/

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Debugging Shader (3)Debugging Shader (3)

• Execution cycle needed for a shader can be

determined offline
nvshaderperf -a G70 -f main shader.cg

http://developer.nvidia.com/object/nvshaderperf_home.html

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Debugging CUDADebugging CUDA

• CUDA can be executed in device emulation

mode => threads are executed sequentially

• Set break point is feasible

• Currently, debugging tools are still quite

scarce

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Debugging CUDA (2)Debugging CUDA (2)

• VC++ debug modes

– EmuDebug, Debug

• Kernel codes are traceable in EmuDebug

(emulation) mode, not on actual hardware

• gdb debugger (not yet released)

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Debugging CUDA (3)Debugging CUDA (3)

• Profiling in CUDA

./shaderprogram –N1024

method=[memcopy] gputime=[1427.200]

method=[memcopy] gputime=[10.112]

method=[memcopy] gputime=[9.632]

method=[real2complex] gputime=[1654.080] cputime=[1702.000] occupancy=[0.667]

method=[c2c_radix4] gputime=[8651.936] cputime=[8683.000] occupancy=[0.333]

method=[transpose] gputime=[2728.640] cputime=[2773.000] occupancy=[0.333]

method=[c2c_radix4] gputime=[8619.968] cputime=[8651.000] occupancy=[0.333]

method=[c2c_transpose] gputime=[2731.456] cputime=[2762.000] occupancy=[0.333]

method=[solve_poisson] gputime=[6389.984] cputime=[6422.000] occupancy=[0.667]

method=[c2c_radix4] gputime=[8518.208] cputime=[8556.000] occupancy=[0.333]

method=[c2c_transpose] gputime=[2724.000] cputime=[2757.000] occupancy=[0.333]

method=[c2c_radix4] gputime=[8618.752] cputime=[8652.000] occupancy=[0.333]

method=[c2c_transpose] gputime=[2767.840] cputime=[5248.000] occupancy=[0.333]

method=[complex2real_scaled] gputime=[2844.096] cputime=[3613.000] occupancy=[0.667]

method=[memcopy] gputime=[2461.312]

By enabling
CUDA_PROFILE: to enable (1) or disable (0)

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Debugging CUDA (4)Debugging CUDA (4)

• Occupancy -- amount of shared memory and

registers used by each thread block

• CUDA occupancy calculator computes the

multiprocessor occupancy of the GPU by a

given CUDA kernel
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

T. T. Wong
5 June 2008, CIGPU, WCCI 2008

Panel DiscussionsPanel Discussions

• Components needed for GPGPU from the

perspective of EC community

• Debugging experience

• Standardization of GPGPU platforms and

languages

• Any other topics

