
Performing with CUDA

W. B. Langdon
CREST lab,

Department of Computer Science

8.7.2011

Pages 423-430

W. B. Langdon, UCL 2

Introduction
• Initial steps
• Concentrate upon what is different about high

performance with GPU:
– Many threads

– Finding and avoiding bottlenecks

• Conclusions

W. B. Langdon, UCL 3

Before you code
• How much of your new application will be

run in parallel? If <90% stop.
• EA called “embarrassingly parallel”
• If big population: one thread per member
• May be hard to parallelise fitness function
• How much of GPU’s speed, memory do

you need? (Advertised performance is
best possible)

4

GPU computing needs many threads

Best speed ≥ 20× number of stream processors

W. B. Langdon, UCL 5

GPU many threads hide latency

W. B. Langdon, UCL 6

Bottlenecks

W. B. Langdon, UCL 7

W. B. Langdon, UCL 9

Slowest step dominates

• In a car you know if
– Doing well, road is wide and smooth

– In heavy traffic or road is narrow and bendy

• With a GPU it is difficult to tell what is
holding you back

W. B. Langdon, UCL 10

Fermi C2050

PCI host↔GPU link always narrower bottleneck
than GPU↔on board memory.

Both can be important.

W. B. Langdon, UCL 11

Locate Bottleneck in Design:
Host PC↔GPU PCI Bus

• PCI can be estimated in advance
• Number bytes into and back from GPU per

kernel call.
• How long to transfer data (byte/bandwidth)
• How long between kernel launches?

– If <1millisec consider fewer bigger launches

• bandwidthTest (see switches) gives PCI
speed.

12

Other Bottlenecks

• In theory can do the same for GPU-global
memory transfers but.
– Hard to do.
– PCI can run at 100% usage (pinned memory)

– Hard to predict fraction of usage inside GPU
– What effect will caches have?

– Enough threads to keep both processors and
memory buses busy.

– Atomic and non-coalesced operations may
have unexpectedly large impact

W. B. Langdon, UCL 13

Performance by Hacking

• Measuring performance
• Is performance good enough? Stop
• Can it be made better? No: stop.
• Identify and remove current bottleneck.
• Measure new performance. What is new

bootleneck?

Timing whole kernels on host

Remember to use cudaThreadSynchronize.
See examples in CUDA SDK sources.

15

Timing Kernel Code
• Perhaps use GPU’s own clock
• Alter kernel to do operation N+1 times instead of

just once.
– Time per operation ≈ extra kernel time/N

• Ensure new code behaves same as old
• Ensure nvcc compiler does not optimise away

your modification

• Results can be disappointing: less compute time
may mean more time waiting for memory.

16

CUDA Profiler
• Two parts

– Counters on GPU, write data to host files

– User interface to control which counters are
active and display results

• Linux Visual profiler not stable
– Use spreadsheet, gnuplot etc instead

• CUDA Profiler good for measuring:
– Divergence

– Cache misses (non-coalesced IO)
– Serialised access to constant memory

W. B. Langdon, UCL 17

Multiple GPUs

• CUDA requires you to use conventional
threads on host (eg pthreads).

• Large overhead on creating GPU data
structures on host. So:
– Create CUDA data once at start of run

– Create pthreads once at start of run

W. B. Langdon, UCL 18

Other Approaches

• Can you compress data.
– eg send bytes across PCI rather than int

• Can you keep data on GPU to avoid
re-reading it?

• Would it be better to re-calculate rather
than re-read?

W. B. Langdon, UCL 19

Conclusions
• Design before you start.

– Will non-parallel part prevent useful speedup?

– Use lots of threads

• Locate slowest step. Concentrate on it.
• Slowest step usually moving data
• Don’t be afraid to waste computation
• Computation is cheap. Data is expensive

W. B. Langdon, UCL 20

END

http://www.epsrc.ac.uk/

A Field Guide To
Genetic Programming

http://www.gp-field-guide.org.uk/

Free
PDF

The Genetic Programming Bibliography

The largest, most complete, collection of GP papers.
http://www.cs.bham.ac.uk/~wbl/biblio/

With 7554 references, and 5,895 online publications, the GP Bibliography is a
vital resource to the computer science, artificial intelligence, machine learning,
and evolutionary computing communities.

RSS Support available through the
Collection of CS Bibliographies.

A web form for adding your entries. Wiki to
update homepages. Co-authorship
community. Downloads

A personalised list of every author’s GP
publications.

Search the GP Bibliography at
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

