Performing with CUDA

W. B. Langdon

CREST lab,
Department of Computer Science

N
[
=

I

5
-

Pages 423-430

8.7.2011

Introduction

e Initial steps

« Concentrate upon what Is different about high
performance with GPU:

— Many threads
— Finding and avoiding bottlenecks

e Conclusions

W. B. Langdon, UCL 2

Before you code

How much of your new application will be
run in parallel? If <90% stop.

EA called “embarrassingly parallel”
If big population: one thread per member
May be hard to parallelise fithess function

How much of GPU’s speed, memory do
you need? (Advertised performance Is
best possible)

W. B. Langdon, UCL

CIREST
-—lq__‘_h‘l‘ -'h..___\‘\ ._‘-‘1"*-._

GPU computing needs many threads

Park-Miller Pzeudo Random Numbers Tesla C2090, Tesla T10P, GeFarce 8500 GTH

le+lZ T T T T T T T T T T T T
+ o+ + O+ o+ + o+ + o+ +
+
+
le+11 |]
+
+
w oowW oW ¥ 0om®m XK H ® o® ¥ kA
z ’ .
§ le+lr | + ” E
(5]
gh ¥ i K ¥ ¥ ® K ¥ ¥ ¥ K K ¥
ﬁ& + o T *
sl £
513% Lexo3 ¢ ' ok folg] o o] B =@ O o 8
= + B o
e z + * m =
S S
40 + o]
w2 108 | - .
k] [T + o]
o ®
o £ *
o = b
& * g
(=] H#
B 1e+d7 | ; ¥ 8 b
& * o] 4da Sp
* o 19z Sp
=} 125 Stream Proceszsors
let0f | E
= GF CUDA Tesla C2050 +
o] Oouble precizion CUDA Tesla C2050 =
Double precision CUDA pre-production T10Pp =
Valuedf Rapidf’lind 2 GeForce §300 GTx @
100000 1 1 L 1 1 1 1 1 1 1
1 4 16 & 256 1624 4k 16K Gk 206k 1M 4
threads langdon/cigpuz o1l

Best speed 2 20x number of stream processors

CIREST
-—lq__‘_h‘l‘ -'h..___\‘\ ._‘-‘1"*-._

GPU many threads hide latency

“constant" Read Only 64k(2k cache, thread contention)

shared 48k/1 6k
e nn o ol
- o
] - -—Otheq threads -
————————— = latency --------->
' cache 16k/48k

oft chip memory

W. B. Langdon, UCL 5

CIREST

Bottlenecks

W. B. Langdon, UCL

.

Slowest step dominates

e In a car you know If
— Doing well, road is wide and smooth
— In heavy traffic or road is narrow and bendy

 With a GPU it is difficult to tell what i1s
holding you back

W. B. Langdon, UCL

Fermi C2050

.
— 5.8Gbyte/S | GPU Chip 84 Gbyte/S
~— 6.1Gbyte/S
- . 448
PCI Processors

PCIl host—GPU link always narrower bottleneck
than GPU<on board memory.

Both can be important.

W. B. Langdon, UCL 10

CIREST
-—lq__‘_h‘l‘ -'h..___\‘\ ._‘-‘1"*-._

Locate Bottleneck in Design:
Host PC+—~GPU PCI Bus

e PCI can be estimated in advance

 Number bytes into and back from GPU per
kernel call.

. |

. I

ow long to transfer data (byte/bandwidth)
ow long between kernel launches?

— If <Imillisec consider fewer bigger launches

 bandwidthTest (see switches) gives PCI
Speed.

W. B. Langdon, UCL 11

Other Bottlenecks

 In theory can do the same for GPU-global
memory transfers but.

— Hard to do.

— PCI can run at 100% usage (pinned memory)
— Hard to predict fraction of usage inside GPU
— What effect will caches have?

— Enough threads to keep both processors and
memory buses busy.

— Atomic and non-coalesced operations may
have unexpectedly large impact

12

Performance by Hacking

Measuring performance

Is performance good enough? Stop
Can it be made better? No: stop.
ldentify and remove current bottleneck.

Measure new performance. What is new
bootleneck?

W. B. Langdon, UCL

13

" Timing whole kernels on host

ffTime transfer of d_1D_in from PC to GPU
cutilSafeCall(cudaThreadSynchronize() J;
cutilCheckError{ cutResetTimer{(hTimer)):
cutilCheckError{ cutStartlTimerChTimer) J):

cutilSafelCall(
cudaMemcpy(d_1D_in.In.In_size®*sizeof(int),
cudaMemcpyHostToDevice))

cutilSafeCall(cudaThreadSynchronize() J}:
cutilCheckError{cutStopTimer(hTimer))
const double = cutbetTimerYalue(hTimer)

gpulotal += gpulimelp:

Remember to use cudaThreadSynchronize.
See examples in CUDA SDK sources.

CIREST

Timing Kernel Code

 Perhaps use GPU’s own clock
« Alter kernel to do operation N+1 times instead of

just once.
— Time per operation = extra kernel time/N

 Ensure new code behaves same as old
* Ensure nvcc compiler does not optimise away
your modification

//prevent compiler optimising away junk_timing_info
if(in_length<0)} d_out=junk_timing_info:

* Results can be disappointing: less compute time
may mean more time waiting for memory.

15

CUDA Profiler

 TwoO parts
— Counters on GPU, write data to host files

— User Interface to control which counters are
active and display results

 Linux Visual profiler not stable
— Use spreadsheet, gnuplot etc instead

 CUDA Profiler good for measuring:
— Divergence
— Cache misses (non-coalesced 10)
— Serialised access to constant memory

16

Multiple GPUs

« CUDA requires you to use conventional
threads on host (eg pthreads).

e Large overhead on creating GPU data
structures on host. So:
— Create CUDA data once at start of run
— Create pthreads once at start of run

W. B. Langdon, UCL

17

Other Approaches

e Can you compress data.
— eg send bytes across PCI rather than int

e Can you keep data on GPU to avoid
re-reading It?

 \WWould i1t be better to re-calculate rather
than re-read?

W. B. Langdon, UCL 18

Conclusions

Design before you start.
— Will non-parallel part prevent useful speedup?
— Use lots of threads

Locate slowest step. Concentrate on It.
Slowest step usually moving data

Don’t be afraid to waste computation
Computation is cheap. Data is expensive

W. B. Langdon, UCL 19

END

http://www.epsrc.ac.uk/ EPSRC

W. B. Langdon, UCL 20

A Field Guide To
Genetic Programming
http://www.gp-field-guide.org.uk/

A
Field
Guide
to

|

enetlic

Programming

Free
PDF

The Genetic Programming Bibliography

The largest, most complete, collection of GP papers.
http://www.cs.bham.ac.uk/~wbl/biblio/

With 7554 references, and 5,895 online publications, the GP Bibliography is a
vital resource to the computer science, artificial intelligence, machine learning,
and evolutionary computing communities.

RSS Support available through the
Collection of CS Bibliographies. EHEES

'@P A web form for adding your entries. Wiki to .
.. o A update homepages. Co-authorship e
community. Downloads vl ‘

A personalised list of every author's GP
publications.

Search the GP Bibliography at -
http://linwww.ira.uka.de/bibliography/Ai/genetic.programming.html

