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Introduction

e Initial steps

« Concentrate upon what Is different about high
performance with GPU:

— Many threads
— Finding and avoiding bottlenecks

e Conclusions
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Before you code

How much of your new application will be
run in parallel? If <90% stop.

EA called “embarrassingly parallel”
If big population: one thread per member
May be hard to parallelise fithess function

How much of GPU’s speed, memory do
you need? (Advertised performance Is
best possible)

W. B. Langdon, UCL



CIREST
-—lq_\_‘_h‘l‘ -'h.._\_\_\‘\ ._‘-‘1"*-._

GPU computing needs many threads
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GPU many threads hide latency

“constant" Read Only 64k(2k cache, thread contention)
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Bottlenecks
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Slowest step dominates

e In a car you know If
— Doing well, road is wide and smooth
— In heavy traffic or road is narrow and bendy

 With a GPU it is difficult to tell what i1s
holding you back
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Fermi C2050

.
— 5.8Gbyte/S | GPU Chip 84 Gbyte/S
~— 6.1Gbyte/S
- . 448
PCI Processors

PCIl host—GPU link always narrower bottleneck
than GPU<on board memory.

Both can be important.
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Locate Bottleneck in Design:
Host PC+—~GPU PCI Bus

e PCI can be estimated in advance

 Number bytes into and back from GPU per
kernel call.

. |

. I

ow long to transfer data (byte/bandwidth)
ow long between kernel launches?

— If <Imillisec consider fewer bigger launches

 bandwidthTest (see switches) gives PCI
Speed.
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Other Bottlenecks

 In theory can do the same for GPU-global
memory transfers but.

— Hard to do.

— PCI can run at 100% usage (pinned memory)
— Hard to predict fraction of usage inside GPU
— What effect will caches have?

— Enough threads to keep both processors and
memory buses busy.

— Atomic and non-coalesced operations may
have unexpectedly large impact
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Performance by Hacking

Measuring performance

Is performance good enough? Stop
Can it be made better? No: stop.
ldentify and remove current bottleneck.

Measure new performance. What is new
bootleneck?

W. B. Langdon, UCL
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" Timing whole kernels on host

ffTime transfer of d_1D_in from PC to GPU
cutilSafeCall( cudaThreadSynchronize() J;
cutilCheckError{ cutResetTimer{(hTimer) ):
cutilCheckError{ cutStartlTimerChTimer) J):

cutilSafelCall(
cudaMemcpy(d_1D_in.In.In_size®*sizeof(int),
cudaMemcpyHostToDevice))

cutilSafeCall( cudaThreadSynchronize() J}:
cutilCheckError{cutStopTimer(hTimer))
const double = cutbetTimerYalue(hTimer)

gpulotal += gpulimelp:

Remember to use cudaThreadSynchronize.
See examples in CUDA SDK sources.
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Timing Kernel Code

 Perhaps use GPU’s own clock
« Alter kernel to do operation N+1 times instead of

just once.
— Time per operation = extra kernel time/N

 Ensure new code behaves same as old
* Ensure nvcc compiler does not optimise away
your modification

//prevent compiler optimising away junk_timing_info
if(in_length<0)} d_out=junk_timing_info:

* Results can be disappointing: less compute time
may mean more time waiting for memory.
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CUDA Profiler

 TwoO parts
— Counters on GPU, write data to host files

— User Interface to control which counters are
active and display results

 Linux Visual profiler not stable
— Use spreadsheet, gnuplot etc instead

 CUDA Profiler good for measuring:
— Divergence
— Cache misses (non-coalesced 10)
— Serialised access to constant memory
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Multiple GPUs

« CUDA requires you to use conventional
threads on host (eg pthreads).

e Large overhead on creating GPU data
structures on host. So:
— Create CUDA data once at start of run
— Create pthreads once at start of run

W. B. Langdon, UCL
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Other Approaches

e Can you compress data.
— eg send bytes across PCI rather than int

e Can you keep data on GPU to avoid
re-reading It?

 \WWould i1t be better to re-calculate rather
than re-read?

W. B. Langdon, UCL 18



Conclusions

Design before you start.
— Will non-parallel part prevent useful speedup?
— Use lots of threads

Locate slowest step. Concentrate on It.
Slowest step usually moving data

Don’t be afraid to waste computation
Computation is cheap. Data is expensive
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END

http://www.epsrc.ac.uk/ EPSRC
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A Field Guide To
Genetic Programming
http://www.gp-field-guide.org.uk/

A
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The Genetic Programming Bibliography

The largest, most complete, collection of GP papers.
http://www.cs.bham.ac.uk/~wbl/biblio/

With 7554 references, and 5,895 online publications, the GP Bibliography is a
vital resource to the computer science, artificial intelligence, machine learning,
and evolutionary computing communities.

RSS Support available through the
Collection of CS Bibliographies. EHEES

'@P A web form for adding your entries. Wiki to .
.. o A update homepages. Co-authorship e
community. Downloads vl ‘

A personalised list of every author's GP
publications.

Search the GP Bibliography at -
http://linwww.ira.uka.de/bibliography/Ai/genetic.programming.html



