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Convergence in Genetic Programming and  

Long-Term Evolution Experiments 

• More challenging problems may require 

running evolution for longer. Hence the 

need to study what happens in long runs. 

Perhaps we can anticipate and solve 

problems that may occur. [Added 13 May 2017] 

• Results 

– quadratic tree growth 

– differences from crossover only theory 

– converge of binary trees 

– random drift stops bloats  
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6 Multiplexor 

• GP bench mark. 

• Six inputs: 

• Use two (D4 D5) as binary number to connect 

corresponding data lines (D0-D3) to the output 

• Test on all 26=64 possible combinations 

• Fitness score (0-64) is number correct 
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Impact of Subtrees 

• Subtree like whole tree. 

• Output of subtree is via its root node 

• Intron: subtree which has no effect on 

overall fitness. I.e. its output does not 

impact on root node of whole tree. 

• Constant subtree always has same output, 

i.e. same output on all 64 test cases. 

• Remaining effective code has an impact 

on root node. Typically it is next root node 

4 W. B. Langdon, UCL 



Example Intron: AND Function 

Left: two input AND node. 

Right: same but input B is always 0. 

So output always 0. Input A has no effect. 

Subtree A is always ignored, even in child. 

(NB no side effects) 
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Constants 
• Two constants: always 0 and always 1 

(FFFFFFFFFFFFFFFF). 

• E.g. evolve by negating input and ANDing 

with same input  

      (AND D0 (NOR D0 D0)) = 0 

 

 

• Constants help form introns but may be 

disrupted by crossover. 

• However large subtrees which always output 

either 0 or 1 tend to be resilient to crossover 



Evolution of Program Size 
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Note evolution continues after 1st solution found in generation 22 and even 

after 1st population where everyone has maximum fitness (generation 312). 

GP+EM (1)1 pp95-119 

http://dx.doi.org/doi:10.1023/A:1010024515191
http://dx.doi.org/doi:10.1023/A:1010024515191
http://dx.doi.org/doi:10.1023/A:1010024515191


Evolution of Program Size 
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Note evolution continues even after 1st population where everyone has 

maximum fitness (generation 312) but falls as well as rises. 



Testing Theory 

• Theory assumes crossover only (no selection). In 

EuroGP2007 distribution of sizes converged to limit rapidly. 

• Selection caused by a few runts modifies size distribution 

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli_2007_eurogp.html


Convergence in Genetic Programming 

• GP genotypes typically do not converge. 

Even after many generations every tree in 

the population is different, BUT… 

• Every (or almost all) trees give the same 

answers (phenotypic convergence) 

• Effective code, i.e. code to solve problem, 

does converge.  

 Effective code other runs converges differently 
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Convergence of typical Effective Code 

Gen 500 

Only 141 instructions of 16,831 are effective 

Gen 400 

Only 111 instructions of 15,495 are effective 

Tree drawing code lisp2dot.awk 

http://www.cs.ucl.ac.uk/staff/W.Langdon/lisp2dot


Convergence of Effective Code 

Effective code only. Yellow highly converged. 

Black unique code 12 Circular lattice code gp2lattice.awk 

http://www.cs.ucl.ac.uk/staff/W.Langdon/gggp/bmux6.100.gif
http://www0.cs.ucl.ac.uk/staff/W.Langdon/gp2lattice/gp2lattice.html


Evolved Trees Random Shapes 
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Plot whole tree (different population) 

http://youtu.be/mExk4OHubFY


Shapes of Evolved Trees 

Both whole trees × and subtrees lie near 
Flajolet Depth ≈ 2

π 𝑠𝑖𝑧𝑒

2

½ 
 limit1 for random trees 
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https://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2000_fairxo.html


Bloat limited by Gambler’s ruin 
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• Tiny fraction of disrupted (low fitness) children sufficient 

to drive evolution towards every bigger trees. 

• As trees get bigger chance of hitting protected effective 

code near root node falls. 

• In a finite population eventually no child will be disrupted. 

• Size, without fitness, difference just wanders at random. 

• Crossover cannot escape from population of tiny trees. 

• So we have a lower limit on the random fluctuation. 

I.e. a Gambler’s ruin. 

• But wondering towards lower limit will re-establish the 

conditions for bloat. 

• Very approximate limit on tree size: 

tree size ≈ number of trees × core code size 



Bloat limited by Gambler’s ruin 

In all ten runs the whole population 

repeatedly collapses towards smaller trees 

• tree size ≈ number of trees × core code size 

• tree size ≈ 50 × 497 ≈ 25000 

• Across ten runs and 100,000 generation, median mean size 

42,507 (smallest tree in pop size=10,513) 



• Next: 

– Why quadratic increase in size < gen 350 
• Existing theory 

– differences from crossover only limit 

– Formalise random drift 

– Which types of GP will converge like this? 

Questions 
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