
A Many Threaded CUDA Interpreter

for genetic programming

W. B. Langdon

CREST lab,

Department of Computer Science

Slides presented at EuroGP 2010, LNCS 6021, p146-158

http://www.dcs.kcl.ac.uk/staff/W.Langdon/

2

Introduction

• Running tree GP on graphics hardware

• How

• 8692 times faster than PC without GPU

• Solved 20 input Boolean multiplexor problem

• Solved 37 input Boolean multiplexor problem

(all 137 109 tests)

W. B. Langdon, King's London

Threat: No More Moore’s Law

• CPUs no longer double in speed

• BUT number of transistors is still doubling

– More complicated CPU

– Parallel

• Today a single graphics card can contain

hundreds of fully functioning CPUs running

in parallel

3W. B. Langdon, King's London

Benefit: Moore’s Law applies

to number of transistors
2 240 Stream Processors

Clock 1.24 GHz ¾ Tflop (nbody estimate)

1992 MByte

Available 1.5GHz

4 tesla up to 16GBytes

Fermi 64 bit (March 26)

512 processors

3 billion transistors

1.35 Tflops (manufacture)

10½ 4⅜ inchesnVidia GeForce 295 GTX

GPU v PC

Fermi

ATI 5870

1600 cpus

Speed up

• Speed comes from combining and improving

four GP techniques:

– Graphics hardware

– Sub machine code GP (use all 32 bits)

– Random sampling of fitness cases

– Reverse Polish Notation CUDA interpreter

Graphics hardware 480

Sub machine code GP 32

Sampling fitness cases 512 (20 mux)

16,777,216 (37 mux)

RPN CUDA interpreter 1

Sub Machine Code GP

• Graphics cards supports many data types

– RapidMind 2 only used float

• Pack 32 Boolean bits into one integer

– AND int does 32 Boolean logic in one go

• Each thread does 32 fitness cases

– All tests for D0 D1 D2 D3 D4 in one go

• Correct bit mask = ~(answer XOR target)

– Fitness = count correct bits

– Seibert’s fast bit count (3 lines v loop 32)

7

Sampling Fitness Cases 1

• Too many training cases to use all.

– So train on randomly selected sample

• When a GP individual passes all 8192

tests in the random sample, then check all

137 109 tests.

• Use whole GPU to test one program

– Can stop first time any test fails

– If fail abort other tests running in parallel

Sampling Fitness Cases 2

• Using submachine code GP so can test all

32 lower 5 bits patterns. Sample top 32bits

• For each random pattern invert top 32bits

to also test its complement.

• Sample needs 8192/32/2=128 pseudo

random numbers

• Reduce noise by using same random

sample for all 4 members of tournament

• Each generation and each tournament has

different sample

Reverse Polish Tree Interpreter

(Mul (Sub A 10) B) ≡ A 10 - B

Variable (terminal): push onto stack

Function pop arguments, do operation, push result

1 stack per program. All stacks in shared memory.

PC moves linearly from start→end expression

11

• Same structure on host as GPU.
– Avoid explicit format conversion when population is

loaded onto GPU.

• Genetic operations act on Reverse Polish:
– random tree generation (eg ramped-half-and-half)

– subtree crossover

– 2 types of mutation

• Requires only one byte per leaf or function.
– So large populations (millions of individuals) are

possible.

• Like GPquick (but GPquick uses linearised prefix)

• nVidia CUDA kernel replaces RapidMind

Representing the Population

CUDA Interpreter: Summary

• Put stack in fast shared memory

• Randomised testing

• Choice between sequential and parallel

• Use 1↔256 threads for one test

– reduce by parallel sum into one fitness value.

– Siebert’s bit count (replaces 32 loops)

• 1 Program in fast read-only global memory

• Interprets 261 109 GP primitives per sec.

• (670 billion per second sustained peak)

13

Experiments

• 20 multiplexor solved

– Full test 220 = 1,048,576

– sample size = 2048

• 37 multiplexor solved

– Full test 237 =137 billion test cases

– sample size = 8192

W. B. Langdon, King's London

Boolean Multiplexor

d = 2
a

n = a + d

Num test cases = 2
n

20-mux 1 million test cases

37-mux 137 10
9

tests

15

20-Mux 37-Mux

• Function set: AND OR NAND NOR

• Terminal set: D0..D37 (D0-D5 packed into int)

• Fitness: tests past

• Population: ¼ million binary trees

• Parameters:

– Ramped ½-½, tournament size=4,

– 50% crossover, 50% mix of mutation,

– max depth 15, max size 1023.

• Up to 5000 generations

16

Evolution of 20-Mux and 37-Mux

W. B. Langdon, King's London

17

Performance v Test v Threads

W. B. Langdon, King's London

18

Performance v Program size

W. B. Langdon, King's London

W. B. Langdon, King's London 19

GP Performance 295 GTX

• GPU 261 109 GP operations/second

averaged across whole run.

– GPU so fast fitness testing not dominating.

PC host now also important (not optimised)

• Sustained peak 670 109 GP ops/sec

– When validation single best program

– One program fits in “constant” memory

– 37-Mux speed up 476 109 → 670 109

Conclusions

• GP CUDA interpreter allows choices of

– which aspects of fitness are done in parallel

– explicit location of key data structures to get
best from GPU hardware.

• Submachine code GP on graphics cards

• Randomise test case selection

– Evolve on tiny (less than 10-6th) fraction of
whole. Then validates on all.

• Cheap - your own “cluster” performance

• FAST - 20-mux and 37-mux solved.

Code via FTP

cs.ucl.ac.uk/genetic/gp-code/gp32cuda.tar.gz

20W. B. Langdon, King's London

