
Genetic Improvement of
LLVM Intermediate Representation

EuroGP 2023

W. B. Langdon

3.4.2023

1

Humies $10000 prizes
Submit by Friday 2 June

12 April 2023

Free PDF

Free E-Book

GI workshop
Saturday 20 May

https://www.evostar.org/2023/eurogp/
http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://www.ucl.ac.uk/crest/
https://www.ucl.ac.uk/crest/
http://www.human-competitive.org/call-for-entries
http://www.gp-field-guide.org.uk/
http://geneticimprovementofsoftware.com/events/icse2023

Genetic Improvement of LLVM Intermediate Representation

 What is LLVM intermediate representation
 What is Genetic Improvement
 What we evolved
 Speedup compared to compiler optimiser
 Software is robust and can be evolved.

W. B. Langdon, UCL 2

https://www.ucl.ac.uk/crest/

What is LLVM intermediate representation

W. B. Langdon, UCL 3

LLVM supports 30+ programming languages and
multiple types of computer,
by separating compiler front-end (source analysis)
and back-end (binary code generation).
LLVM-IR links them.

https://www.ucl.ac.uk/crest/

What is Genetic Improvement

W. B. Langdon, UCL 4

● GI applies search, usually genetic
programming, to existing software

● automatically fix bugs, speed up code,
reduce energy consumption, bandwidth

●

● Often C/C++ or Java source code
● Java byte code, assembler, even machine

code
● Show evolution of LLVM intermediate code

● Given suitable representation and fitness
measure any software can be evolved

https://www.ucl.ac.uk/crest/

Evolving LLVM
 LLVM intermediate representation created

by Clang compiler -S -emit-llvm
 Designed to be optimised, then converted

to machine code
 LLVM orginally C/C++, now ≈30 languages
 GI generate legal LLVM IR (delete only so far)

 Alternatives (may break LLVM-IR)
● LLVM pass, eg llvm-mutate Eric Schulte
● Grammatical Evolution, GPU Jhe-Yu Liou
● Mutation testing

fork

5

https://www.ucl.ac.uk/crest/

LLVM-IR

● Strongly typed (eg i32, i8*, double)
● Single-Static Assignment
● Numbered registers and labels (must be in order)
● define } delimit scope. Local registers start again at 0 in next

function

Local variables

6

https://www.ucl.ac.uk/crest/

Mutable LLVM-IR
 store remove whole IR line
 call remove,

 but if function also replace answer with 0
 Conditional branch. Force branch to left or to right
 Assignment. Replace register with 0
 Two passes. 1st locate scope boundaries.

2nd replace all instances of deleted registers
 Representation is a list of changes

7W. B. Langdon, UCL

https://www.ucl.ac.uk/crest/

Representation list of deletions

8

List of mutations to lines. Separate with ;

Use : to indicate branch

% => local register number
148:2;1895%6;1905:2;1895%40;1895%178;

Force branch line 148 to 2nd label

In scope starting line 1895, delete %6

Force branch line 1905 to 2nd label

In scope starting line 1895, delete %40

In scope starting line 1895, delete %178

W. B. Langdon, UCL

https://www.ucl.ac.uk/crest/

Google global OLC Fitness Test cases, Linux perf

 Convert latitude longitude pair into internal code
(16 bytes)

 ten test cases
 Count CPU instructions using perf
 Mutate all LLVM one at a time
 Select only those that do not fail
 Best first search to select/assemble from these
 Demo on 10,000 locations
 Similar Uber H3 (13x more code, 40 tests)
 GI LLVM-IR without and with clang -O3

9W. B. Langdon, UCL

https://www.ucl.ac.uk/crest/

Uber global H3, Results

10

 H3 as OLC, but better test cases.
 H3 internal code (15 bytes)
 forty test cases

 OLC and H3 often remove redundant code.
 10508%74 saves 872 instructions by always

calling doCoords. (Zeroing register %74
removes condition before doCoords)

W. B. Langdon, UCL

https://www.ucl.ac.uk/crest/

● Genetic Improvement has been applied to industrial code
● GI code has been adopted and is in use world wide

● Eg used when designing covid tests
● GI code is under traditional human maintenance
● LLVM intermediate representation can be evolved
● other

● Target bottle necks: profile.
● Deal with noise: run multiple times, 1st quartile, perf

● performance may not be stable: use differences
● GI solutions tend to generalise. Maybe use co-evolution,

perhaps source code analysis so fitness covers edge
cases

● Code is not fragile

Conclusions

11W. B. Langdon, UCL

https://www.ucl.ac.uk/crest/

W. B. Langdon, UCL

Human-Competitive results
 total $10,000 prizes

email your entry to
goodman@msu.edu

by friday 2nd June 2023

Genetic Improvement workshop

Hybrid Saturday 20 May

Automated Software Engineering
Special Issue on Genetic Improvement

editors: Justyna Petke & Markus Wagner

https://www.ucl.ac.uk/crest/
http://www.human-competitive.org/call-for-entries
http://geneticimprovementofsoftware.com/events/icse2023
https://link.springer.com/collections/gabebegheh

Genetic Programming

W. B. Langdon

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://www.ucl.ac.uk/crest/
https://www.ucl.ac.uk/crest/

The Genetic Programming Bibliography

16261 references, 16000 authors

Co-authorship community.
Downloads

A personalised list of every author’s
GP publications.

blog

Googling GP bibliography, eg:
Evolutionary Medicine site:gpbib.cs.ucl.ac.uk

Make sure it has all of your papers!
E.g. email W.Langdon@cs.ucl.ac.uk or use | Add to It | web link

Downloads by day

Your papers

http://gpbib.cs.ucl.ac.uk/blog.html
http://www.cs.ucl.ac.uk/cgi-bin/staff/W.Langdon/WBT.cgi
https://www.ucl.ac.uk/crest/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

