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Genetic Improvement of LLVM Intermediate Representation

 What is LLVM intermediate representation
 What is Genetic Improvement
 What we evolved
 Speedup compared to compiler optimiser
 Software is robust and can be evolved.
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What is LLVM intermediate representation
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LLVM supports 30+ programming languages and 
multiple types of computer,
by separating compiler front-end (source analysis) 
and back-end (binary code generation). 
LLVM-IR links them.
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What is Genetic Improvement
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● GI applies search, usually genetic 
programming, to existing software

● automatically fix bugs, speed up code, 
reduce energy consumption, bandwidth

●

● Often C/C++ or Java source code
● Java byte code, assembler, even machine 

code
● Show evolution of LLVM intermediate code

● Given suitable representation and fitness 
measure any software can be evolved
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Evolving LLVM
 LLVM intermediate representation created 

by Clang compiler -S -emit-llvm
 Designed to be optimised, then converted 

to machine code
 LLVM orginally C/C++, now ≈30 languages
 GI generate legal LLVM IR (delete only so far)

 Alternatives (may break LLVM-IR)
● LLVM pass, eg llvm-mutate Eric Schulte
● Grammatical Evolution, GPU Jhe-Yu Liou
● Mutation testing

fork
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LLVM-IR

● Strongly typed (eg i32, i8*, double)
● Single-Static Assignment
● Numbered registers and labels (must be in order)
● define } delimit scope. Local registers start again at 0 in next 

function 

Local variables
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Mutable LLVM-IR
 store    remove whole IR line
 call   remove,

               but if function also replace answer with 0
 Conditional branch. Force branch to left or to right
 Assignment. Replace register with 0
 Two passes. 1st locate scope boundaries.           

2nd replace all instances of deleted registers
 Representation is a list of changes
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Representation list of deletions
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List of mutations to lines. Separate with ;

Use : to indicate branch

% => local register number
148:2;1895%6;1905:2;1895%40;1895%178;

Force branch line 148 to 2nd label

In scope starting line 1895, delete %6

Force branch line 1905 to 2nd label

In scope starting line 1895, delete %40

In scope starting line 1895, delete %178
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Google global OLC Fitness Test cases, Linux perf

 Convert latitude longitude pair into internal code 
(16 bytes)

 ten test cases
 Count CPU instructions using perf
 Mutate all LLVM one at a time
 Select only those that do not fail
 Best first search to select/assemble from these
 Demo on 10,000 locations
 Similar Uber H3 (13x more code, 40 tests)
 GI LLVM-IR without and with clang -O3
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Uber global H3, Results
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 H3 as OLC, but better test cases.
 H3 internal code (15 bytes)
 forty test cases

 OLC and H3 often remove redundant code.
 10508%74 saves 872 instructions by always 

calling doCoords. (Zeroing register %74 
removes condition before doCoords)
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● Genetic Improvement has been applied to industrial code 
● GI code has been adopted and is in use world wide

● Eg used when designing covid tests
● GI code is under traditional human maintenance
● LLVM intermediate representation can be evolved
● other

● Target bottle necks: profile.
● Deal with noise: run multiple times, 1st quartile, perf 

● performance may not be stable: use differences
● GI solutions tend to generalise. Maybe use co-evolution, 

perhaps source code analysis so fitness covers edge 
cases

● Code is not fragile

Conclusions
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Genetic Programming
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The Genetic Programming Bibliography

16261 references, 16000 authors

Co-authorship community.
Downloads 

A personalised list of every author’s 
GP publications.

blog

Googling GP bibliography, eg:
Evolutionary Medicine site:gpbib.cs.ucl.ac.uk

Make sure it has all of your papers!
E.g. email W.Langdon@cs.ucl.ac.uk   or   use | Add to It | web link

Downloads by day

Your papers

http://gpbib.cs.ucl.ac.uk/blog.html
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