
Improving 3D Medical Image Registration CUDA Software
with Genetic Programming

William B. Langdon, Marc Modat, Justyna Petke, Mark Harman
Dept. of Computer Science, University College London Gower Street, WC1E 6BT, UK

W.Langdon@cs.ucl.ac.uk

ABSTRACT
Genetic Improvement (GI) is shown to optimise, in some
cases by more than 35%, a critical component of health-
care industry software across a diverse range of six nVidia
graphics processing units (GPUs). GP and other search
based software engineering techniques can automatically op-
timise the current rate limiting CUDA parallel function in
the Nifty Reg open source C++ project used to align or reg-
ister high resolution nuclear magnetic resonance NMRI and
other diagnostic NIfTI images. Future Neurosurgery tech-
niques will require hardware acceleration, such as GPGPU,
to enable real time comparison of three dimensional in the-
atre images with earlier patient images and reference data.
With millimetre resolution brain scan measurements com-
prising more than ten million voxels the modified kernel can
process in excess of 3 billion active voxels per second.
Categories and Subject Descriptor I.2.8 [search]: heuristic

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
SBSE; GPGPU; Medicine; Software engineering

1. INTRODUCTION
Future brain surgery techniques will require comparison of
current images with images of the same patient taken earlier
and also with reference data, e.g. from medical atlases. To
be used in theatre, the system must be real time [8], ruling
out cloud and other off-site solutions. And yet even a simple
task of superimposing today’s data with pre-surgery data is
computationally heavy. The currently favoured solution is to
take advantage of the impressive parallel processing abilities
of high-end graphics processing units. Such GPUs can easily

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2662-9/14/07 ...$15.00.
DOI http://dx.doi.org/10.1145/2576768.2598244 .

 10

 100

 1000

 10000

K20cGTX 580C2050T10GTX 295NVS 290

M
ill

io
ns

 o
f a

ct
iv

eV
ox

el
 p

er
 s

ec
on

d

GP kernel on ten verification images

Figure 1: Performance of modified reg_spline_get

DeformationField3D CUDA kernel after optimisation
by GP, bloat removal and with optimal block size
and -arch.

be placed physically near the surgeon to reduce latency and
offer affordable tera-flop performance.

The need to compare or align noisy real-world high res-
olution three dimensional data occurs widely in industry.
Here we concentrate upon the medical domain since this is
the target of the open source Nifty Reg software1. To take
advantage of the cost effectiveness of general computing on
graphics processing units GPGPU [10], parts of Nifty Reg
have been ported to nVidia’s CUDA system. Indeed many
CUDA kernels are included in the SourceForge download.
However GPGPU programming is acknowledged to be diffi-
cult and so only parts of the Nifty Reg tool set can take ad-
vantage of GPUs. Even those parts which have been ported
to CUDA impose a high software maintenance load and are
not necessarily able to make the best use of more recent
hardware or software.

Nifty Reg has twin goals of both providing tools and of
creating a library of routines which are available to other
C++ programmers. These are somewhat in conflict. Tool
users want the best tool for what they are doing now and
using the hardware they have. Whilst a programmer wants
a library which is generic and can be used for many things to
support many future users whose aims and environments can
only be estimated. Accordingly Nifty Reg has been flexibly
coded.

1http://sourceforge.net/projects/niftyreg/

951

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.ucl.ac.uk/staff/M.Modat/
http://www.cs.ucl.ac.uk/staff/J.Petke/
http://www.cs.ucl.ac.uk/staff/M.Harman/
http://dx.doi.org/10.1145/2576768.2598244
http://sourceforge.net/projects/niftyreg/

Table 1: GPU Hardware. Second column is CUDA
compute capability level (as can be used with nvcc’s
-arch). Each GPU chip contains a number of iden-
tical and more or less independent multiprocessors
(column 3). Each MP contains a number of stream
processors (cores, column 4) whose clock speed is
given in column 6. Measured data rate (ECC en-
abled) between the GPU and its on board memory
is in the last column.

GPU Capability MP × cores GHz Bandwidth

NVS 290 1.1 2 × 8 = 16 0.92 4 GB/s
GTX 295 1.3 30 × 8 = 240 1.24 92 GB/s
Tesla T10 1.3 30 × 8 = 240 1.30 72 GB/s
Tesla C2050 2.0 14 × 32 = 448 1.15 101 GB/s
GTX 580 2.0 16 × 32 = 512 1.54 161 GB/s
Tesla K20c 3.5 13 × 192 = 2496 0.71 140 GB/s

The Nifty Reg toolset makes heavy use of traditional con-
vex optimisation techniques to find the optimal match be-
tween three dimensional images. Since these are based on
derivatives, they require many exact calculations. With high
resolution images, the basic image calculation may need to
be done hundreds of thousands of times. Each one process-
ing millions of voxels. With millimetric resolution NMR im-
ages becoming common place this presents a growing need
for fast 3D registration. At present this can be met off-line
by coarse grained bulk parallel processing in high perfor-
mance super computer clusters either locally or in the cloud.
Such “embarrassingly parallel” approaches work slowly per
image but gain performance when each image can be treated
independently. However such approaches are not suitable for
real-time processing of data for a single patient.

During image registration, with typical hardware and im-
ages containing ≈ten million voxels, Nifty Reg is able to
fully load a single GPU. In some cases more than 70% of
the elapsed time is taken by a single CUDA kernel. We
have used search based engineering to improve both the code
within the kernel and hardware parameters used to control
its parallel running. In so doing we have deliberately traded
some of the generic nature of the original code, instead au-
tomatically producing code which is tailored to each of six
very different graphics cards (see Figure 1 and Table 1).

2. NIFTY REG KERNEL
Next we describe the existing CUDA kernel which, even
though running in parallel, typically dominates run time and
then describe its efficient data access pattern. reg_spline_
getDeformationField3D is typically used as part of an in-
teractive cycle. Each time it is used it takes the current
deformation expressed as a δx, δy, δz vector at regularly
spaced grid control points and returns the corresponding
deformation (again as δx, δy, δz vectors) for every active
voxel in the image. For a typical 2173 (10 218 313 voxel)
image there are 473 = 103 823 grid control points. (47 be-
ing 217/5 plus allowance for up to three neighbouring grid
points lying outside the image.) Each individual deforma-
tion vector is given by a cubic spline calculation involving
4 control points in each of the three dimensions (a total of
4×4×4 = 64 neighbouring control points). The calculation
of each active voxel requires ≈600 (single precision) floating
point calculations.

The original code allowed complete flexibility, with the
calling code able to specify any separation of the grid control
points. However, in practice, grid control points are not
chosen irrationally, instead they often align with voxels. We
chose the most popular spacing (each grid point lies every
fifth voxel) to demonstrate the effect of using simple integer
or half integer spacings. The intention is to support a few
popular spacings and that the Nifty Reg library revert to its
original non-optimised code if the user chooses others.

Notice this means the 64 distances from each voxel to each
of its 64 neighbouring control points now becomes one of a
small set (5) of discrete values. Since the 64 spline coeffi-
cients depend only on these distances, instead of calculating
each on the fly they can be precalculated and stored. By us-
ing the fact that the x, y and z components are independent
only twenty (4× 5) values need to be stored.

In addition to the 103 823 grid control points, the other
large input to the kernel is the list of active voxels for which
it must calculate their δx, δy, δz displacements. The active
voxel list is stored as a vector of integer values, which makes
it easy for the kernel to process each in parallel. The 32-
bit integer values are decoded into the x,y,z location of the
output voxel. This location also readily gives the locations
of each of the neighbouring 64 control points.

As an efficiency measure, instead of each integer referring
to a single voxel it actually represents a 1× 5× 5 volume of
25 voxels, with y,z corners lying at grid control points and
thus having the same 64 neighbouring control points. Thus
an individual warp (32 threads) calculates 25 voxels in par-
allel. Despite discarding 7 threads of every 32, considerable
performance gain is made as all the data for the 25 voxels
is read once, rather than being read individually 25 times.
This also reduces the size of the list of active voxels by a
factor of 25. At the boundary of the region of interest the
lower resolution (1× 5× 5 instead of 1× 1× 1) means there
is a small increase in the total number of active voxels.

A potential future enhancement would be to use 5× 5× 5
volumes all having the same 64 neighbouring control points.
So perhaps using 128 threads to calculate 125 active voxels.
This has not been tried, partly because the GPU lays data
along the x-axis so neighbouring data are more likely to be
pre-fetched or to remain in cache.

Each of the twenty five active voxels needs data from the
same 64 control points. In fact since they share the same
x-location, these reduce to just 16 values. These are calcu-
lated in parallel by 16 (of 32) threads and stored in on-chip
fast shared memory.

These 16 values are combined with different (but pre-
calculated) spline co-efficients to give the 25 output values
that are written simultaneously in parallel by 25 threads.
Each output is represented as a float4, so 400 bytes are
written in one go. Since these are consecutive, the GPU
hardware can do this fairly efficiently. (In fact several 32-
thread warps are grouped together into blocks so the writes
to global memory are even more efficient.)

3. EVOLVING CUDA C++ CODE VIA
A BNF GRAMMAR USING GP

The CUDA C++ code for the kernel is automatically con-
verted into a BNF grammar of 255 rules. See Figure 2. Es-
sentially each rule represents a line of code. Of these 198 are
fixed. Twenty five grammar rules represent ordinary lines of

952

code, six more are C++ #define configuration macros, and
four are for C++ if statements. Although not used in the
final solutions, for completeness we next describe the more
exotic grammar rules.

There are two BNF rules to control CUDA #pragma loop
unrolling compiler directives (plus a further 12 rules to con-
trol choosing #pragma arguments). #pragma may have been
unsuccessful since the kernel contains nested for loops and
it appears nvcc may not support #pragma with nested loops.

The CUDA nvcc compiler uses the C++ __restrict__

qualifier, which allows some optimisations. The grammar
was automatically generated to include a rule which allows
evolution to control the use of __restrict__. Since the ker-
nel has only one argument, which is not read-only,
__restrict__ was not expect to have an impact.

The final group of rules control the use of the CUDA
__launch_bounds__ qualifier on the kernel. With a fur-
ther six allowing evolution to control its parameters. Al-
though documented, __launch_bounds__ is fairly obscure.
It is thought to have been introduced as an aid to the com-
piler’s register allocation strategy but as the compiler heuris-
tics have improved, newer hardware supports more registers
and the CUDA driver overrides the compiler’s choices at run
time, __launch_bounds__ has fallen out of favour.

3.1 Configuration Macros

3.1.1 c_UseBSpline and c_controlPointVoxelSpacing

In the Nifty Reg code these variables are passed to the ker-
nel via CUDA __constant__ memory. However, as we have
evolved efficient kernels for fixed values of c_UseBSpline

and c_controlPointVoxelSpacing, they are no longer vari-
able but instead their values are known at compile time.
(They are respectively, true and 5). The two grammar rules,
c_UseBSpline and c_controlPointVoxelSpacing, give evo-
lution the option of replacing the corresponding variables
with their constant values.

3.1.2 BNF rules controlling conditional compilation
There are four C++ macros which control conditional com-
pilation. These enable evolution to individually control
whether code options are enabled. As with c_UseBSpline

and c_controlPointVoxelSpacing, the idea is that such
code may be beneficial in some cases. This follows some of
the ideas in [9], in that the source code is made more generic
and we leave it to some later optimisation stage to decide on
the exact parameters. However, Merrill et al. [9] were think-
ing of deterministic optimisation rather than more powerful
search based techniques [2].
constantBasis directs the compiler to read pre-calculated

spline coefficients from __constant__ memory rather than
fetching them from the texture cache. It also forces the use
of pre-calculated values for the x dimension. (It may have
been better to separate these two aspects into two separated
genes.)

Two dimensional arrays or textures are used to store the
pre-calculated spline coefficients. Typically the efficiency
with which the hardware accesses arrays depends (in an ar-
cane way) on how the array is laid out and how this matches
the underlying storage hardware. To avoid thinking deeply
about this, the BasisA gene allows evolution to determine
which of the two indexes should appear first.

As voxels with multiple y and z coordinates are calcu-
lated together, y and z use pre-calculated spline coefficients.
Since only one x is in use, the old Nifty Reg code to calcu-
late the associated spline coefficients was left. However the
directxBasis option allows evolution to read pre-calculated
spline coefficients for x as well as y and z. (The compiler
may be able to spot that the results of the x-calculation are
not used and so optimise away their calculation.)

It is often claimed that division and modulus operations
are very expensive on nVidia GPUs. Accordingly the RemX

configuration macro was introduced to allow the calculation
of x%5 to be done just once. However it requires the stor-
age (in new variable int remx) of x%5. It is not clear the
reduced calculation justifies the extra storage. RemX is typi-
cally used by more than a third of the final population and
usually appears in the best of them. However, except in the
optimised C2050 kernel, RemX is always removed along with
the bloat.

3.2 Linear Genetic Representation
The GP works with a linear variable length genome which
specifies (via the grammar) changes to the kernel. I.e., the
GP evolves not complete programs but changes or patches
to programs.

Each genome is stored as a line of text. (See examples
on the RHS of Table 4.) The genome is split into genes by
spaces. The genes are processed in left right order. Each
gene represents one of the 3 fundamental types of mutation:
1) a gene is the name of a BNF rule, meaning that rule, and
hence the corresponding line of code, is deleted. 2) a pair
of BNF rules, meaning the first rule is replaced by a copy
of the second. Typically meaning the first line of code is
replaced by the second. 3) As 2) but the pair of BNF rules
are separated by a +. This means instead of replacing the
first rule, the second rule is inserted before the first. I.e.
inserting a copy of the second line of code before the first.

There are several BNF rule types. Where a gene is com-
posed of two rules, they must be of the same type. For
example, #pragma rules can only be substituted by other
#pragma rules and if condition expressions by other if con-
ditions. Similarly, plain lines of code can be replaced by
other simple lines of code.

A new GPU mutant kernel is created by applying the
chromosome in left-right order to the BNF grammar and
then inverting the modified grammar to create the complete
source code of the new kernel. Although all this manipu-
lation is done in plain text, typically it takes less than a
second to create a new population and generate 300 new
kernels from it. This it is negligible compared to the time
taken by nvcc to compile them.

3.3 Genetic Operators

3.3.1 Initialisation
The initial population is composed of 300 different individ-
uals each being exactly one gene. In subsequent generations
evolution is free to create duplicate individuals. For each
member of the breeding pool one child is created by muta-
tion and one by crossover.

In the rare cases where the number of acceptable parents
in the breeding pool is less than half the population size,
the missing children are created from scratch by uniformly

953

Example of grammar rules used to connect GP with C++ code for configuration control parameter c_UseBSpline Section 3.1.1
<Kkernel.cu_17> ::= <def Kkernel.cu 17>
<def_Kkernel.cu_17> ::= "#define c UseBSpline 1\n”
Grammar rules for code at the start of CUDA kernel function. Also showing grammar for the substitutable conditional
expression within an if statement.
<Kkernel.cu_164> ::= "//each warp processes 25 z values\n”
<Kkernel.cu_165> ::= "const int thread = (threadIdx.x & 31); //each warp acts independently\n”
<Kkernel.cu_166> ::= "const unsigned int tid= (blockIdx.y*gridDim.x+blockIdx.x)*blockDim.x/32+threadIdx.x/32;\n”
<Kkernel.cu_167> ::= " if” <IF Kkernel.cu 167> " {\n”
<IF_Kkernel.cu_167> ::= "(tid<c ActiveVoxelNumber)”
Fragment of grammar rules covering for loop and automatically inserted compiler pragma to control loop un-rolling
<Kkernel.cu_289> ::= <pragma Kkernel.cu 289> "for(c=0;c<4;c++) {\n”
<pragma_Kkernel.cu_289> ::= ""

<pragma_K0> ::= "#pragma unroll \n”
<pragma_K1> ::= "#pragma unroll 1\n”
<pragma_K2 · · · 11> ::= "#pragma unroll 2 · · · 11\n”
<Kkernel.cu_290> ::= <pragma Kkernel.cu 290> "for(b=0;b<4;b++) {\n”
<pragma_Kkernel.cu_290> ::= ""

Fragment of grammar rules covering a simple substitutable line of code, the end of nested for loops and code which writes
the kernel’s output to the GPU’s off-chip global memory
<_Kkernel.cu_294> ::= "displacement.z += tempDisplacement(c,b).z * basis;”
<Kkernel.cu_295> ::= "}\n”
<Kkernel.cu_296> ::= "}\n”
<Kkernel.cu_298> ::= "" < Kkernel.cu 298> "\n”
<_Kkernel.cu_298> ::= "positionField[tid2] = displacement;”

Figure 2: Fragments of the 255 rule BNF grammar describing the human coded image registration graphics
card function which is evolved by GP to create optimised CUDA C++ code.

randomly selecting from all the possible mutations (i.e., in
the same way as those in the initial population).

3.3.2 Mutation
Half the new population is created by simply appending an-
other random mutation.

3.3.3 Crossover
We use two point crossover. In each of the parents two cut
points are randomly chosen. The child is created from the
genes at the start and end of the first parent with those from
the middle of the second parent inserted between them. Du-
plicate genes are removed from the offspring and crossovers
producing empty children are discarded.

In the very rare cases where, after five trials, crossover
is unable to find a legal offspring, its child is created by
mutation.

3.4 Ensuring for Loop Termination
The kernel code includes two loops, each of which cycle be-
tween 0 and 3. To ensure, even badly mutated, kernels al-
ways terminate, the GP was prevented from mutating the
for loop headers or modifying the loop control variables in-
side the loops.

3.5 Protecting Array Indexes
Almost all access to arrays is done via CUDA textures. Tex-
tures provide hardware protection against array indexes go-
ing out of legal ranges. Only in the case of new GPUs and
then only in one case, which accesses on-chip shared memory,
was it necessary to provide array bounds protection. This
was done by preventing GP from moving lines of code ac-
cessing shared memory from inside for loops to after them.
Inside (and indeed before) the for loops the indexes have le-

gal values, problems only arrive in code after the for loops,
where the loop control values are undefined.

3.6 Ensuring Compilation, C++ Scope
To ensure every kernel compiles, GP mutation and crossover
are prevented from copying lines of code to parts of the ker-
nel where variables it might contain might be out of scope.
Typically this means moving lines of code down the source
code is ok. To increase the flexibility allowed to GP, the vari-
able declarations and their initialisation were moved by hand
to the top of kernel. This increased flexibility increases the
search space.

The mutated code causes the nvcc C++ compiler to gen-
erate many warnings but the code always compiles, runs,
terminates and produces a fitness value.

3.7 Efficient Operation of Evolutionary Search
Considerable efficiencies were achieved by compiling and
running every member of the GP population together rather
than individually. Typically the nVidia compiler (CUDA 5.0)
processes in the region of 500 lines of C++ code per second
when more than 50 kernels are compiled together. However
the curve is fairly flat and nvcc also gives good performance
if given more lines of code. Thus, for simplicity, the com-
plete population was compiled in one go [3]. Similarly run-
ning the whole population in one image avoids start/stop
process overheads. It also makes for easy comparison with
both the reference algorithm (i.e. CPU, for correctness) and
(for timing) the reference kernel (no mutations). However
care must be taken to isolate all read-write data so later mu-
tations cannot take advantage of results created by earlier
ones. Omitting all index bounds and loop over run checks,
means that to get accurate timings, each kernel need only
be run once. I.e., there is no need to run with protection en-

954

abled (which has a performance impact, so rendering fitness
measurements unusable [7]) and then run successful mutants
a second time normally. Typically on a 4GB 2.66GHz desk-
top it takes about 50 seconds to compile the population and
about 30 seconds to run it. The bulk of the runtime being
the fitness function which is run on the CPU and compares
every answer generated with the correct answer.

3.8 Error and Execution Time Based Fitness
Each generation a new random image is created and each
GPU kernel is run on it. Fitness is firstly given by the num-
ber of GPU clock ticks taken. To avoid overflow, the number
of ticks is divided by ten. Notice fitness is minimised. Kernel
execution times run from 48 626 to 185 678 246 ticks.

The Nifty Reg CPU code is used to create the ideal correct
answer. Typically it contains about 1.7 million active voxels.
Each answer created by each GPU kernel is checked against
the CPU’s. There may be a small discrepancy due to float-
ing point operations. The GP accepts errors smaller than
0.001 without penalty. However if the worst voxel is more
than 0.001 from its CPU calculated value a severe penalty is
added to the fitness: 213 748 364 × (error + 0.1), subject to
not exceeding 213 748 364. In a very small number of cases
the mutated kernel may fail to set an answer, in which case
there is a penalty of 213 748 364×the fraction of voxels with-
out an answer. If any error exceeds 0.1, it attracts a penalty
of 213 748 364×the fraction of wrong voxels. Each of these
penalties is added to the original fitness based on the kernel’s
elapsed time. Since typically Nifty Reg uses the kernel’s an-
swer immediately on the same GPU, we use the elapse time
on the GPU, excluding any host-GPU interaction time.

3.9 50% Truncation Selection
We use 50% truncation selection, with the best half of the
population getting two children each and the rest none.

At the start of each generation the original unmutated
kernel is run on the current test image. This serves firstly
as a sanity check that the GPU is actually running ok and
secondly it gives a reference fitness which any improved mu-
tated kernel should beat. Even on the GPU, elapse times are
subject to some random variation, therefore when we impose
the rule that to be a parent a mutant must be faster than
the reference kernel we allow a ten percent tolerance. Once
evolution is underway, mutation and crossover typically have
no difficulty in generating 150 children which make no errors
and take no more than 10% longer than the original kernel.
In each case in the initial random population at least 140
random mutants were fast enough to become parents.

4. OPTIMISING NIFTY REG KERNELS

4.1 Random Fitness Test Cases
Typical high resolution NMR brain scans are represented in
the nifti format as 217 × 217 × 217 1 millimetre 3D images
with the brain in the centre. We need only processes the
region of interest (e.g. the brain). For purposes of testing
the software, we can represent the region of interest as a
squashed ball.

An effectively unlimited number of test cases can be gen-
erated at random. The images are simply deformed spheres
of white noise with a diameter of 140 approximately centred
in a cube of side 217. The exact radius, centre and degree of
compression along each dimension can vary by 5% and each

Table 2: CUDA compiler options. Optimal block
size before GP and used during GP runs (column 2).
After GP was run and bloat removed block size was
re-optimised (column 3) and the best nvcc -arch

chosen (column 4). The final column gives the run
time of the optimised kernels on a 217 cube image.

GPU Block size pre-GP post-GP -arch typical mS

Quadro NVS 290 128 256 sm 11 62.40
GeForce GTX 295 64 512 sm 13 3.22
Tesla T10 64 480 sm 13 3.09
Tesla C2050 128 160 none 2.06
GeForce GTX 580 64 160 none 0.84
Tesla K20c 128 128 none 0.71

Table 3: Genetic Programming for Nifty Reg

Representation: Variable list of replacements, deletions
and insertions into BNF grammar

Fitness: Compile modified CUDA code. Run on
about 1.7 million active voxels. Com-
pare its answers with CPU implementa-
tion and compare its run time with that
of original kernel on the same hardware.

Population: Panmictic, non-elitist, generational. 300
members. New randomly chosen train-
ing image each generation.

Parameters: Initial population of random single
mutants. 50% truncation selection.
50% two point crossover, 50% mutation.
No size limit. Stop after 50 generations.

is chosen independently at random. On average 1 700 000 of
the 10 218 313 voxels are active. Note each image contains
≈1.7 million test examples, each of which must be correct.

4.2 Pre-Evolution Parameter Tuning
The kernel was written with one warp per block (i.e. a block
size of 32). It is well known that 1) block size plays a critical
role in GPU performance and 2) it is almost impossible to
calculate the optimal block size from first principles. Thus:
for each of the six GPUs, the kernel was individually com-
piled and run with all sensible legal values of block size. The
one giving the fastest elapsed time was chosen and used dur-
ing evolution. In detail the block size was set to the next
multiple of 32 until either the architecture defined limit on
block size (which varies between GPUs) or a resource limit,
such as number of registers or limit on on-chip shared mem-
ory, was exceeded. The used block sizes are given in Table 2.

The GP was run with a population of 300 for fifty gener-
ations on each of the six GPUs (see Table 3).

4.3 Post Evolution Clean Up and Re-Tune
As expected [11] in all cases the population bloats with rapid
approximately linear increase in number of genes per indi-
vidual. In part this may be due to our mutation opera-
tor which increases the length of the child w.r.t. its parent.
However since we want the GP to explore different code
it is reasonable for it to increase the number of changes it
makes. Since these changes include code deletion, increase
in GP individual size need not lead to increase in source

955

 420000

 425000

 430000

 435000

 440000

 445000

 450000

 455000

 460000

 465000

 470000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

G
P

U
 ti

ck
s

Position in best of run Genome

<288><232>

<IF_245><IF_167>

<288>+<293>

directxBasis

k20c best gen 50

Figure 3: Example of post-evolution clean up, show-
ing performance of GP evolved Nifty Reg kernel as
genes are knocked out. (Tesla k20c). The four spikes
correspond to the four of the 19 genes that are vital
to its performance. Error bars indicate noise toler-
ance. Numbers in < > are line numbers in the kernel
source code. Line in the left < > is replaced by that
in right. < >+< > says insert rather than replace.

code size, and since nvcc is an optimising compiler, and, es-
pecially since we are actively selecting for faster programs,
bloat need not lead to an increase in executable GPU code.
However in all cases such bloat proved unnecessary for the
final solution. We use a simple gene knock out strategy to
determine which parts of the best program from the last
generation are needed.

The genome of the bloated GP individual is processed
one gene at a time in left right order. At each step the next
gene is removed; the modified chromosome is applied to the
BNF grammar, the grammar reversed to give a new CUDA
kernel, which is compiled and run. For repeatability, the
same random image is used. The speed of the new kernel is
compared against that of the evolved kernel. If it is worse,
the gene is retained. If there is no difference the gene is
excluded permanently. We then proceed to the next gene,
until the whole genome has been processed. In all cases, this
leads to a considerable reduction in mutant genome size. To
allow for measurement noise, a gene is excluded if it is less
than 3.0 standard deviations of the GPU clock measurement
noise. See Figure 3.

Finally the optimal block size was determined again (us-
ing the technique described in the previous section). Until
this point the compiler default architecture setting had been
used. This is the setting used by Nifty Reg. In the final step
the compiler was run both without the -arch switch and
with it set appropriately to the target GPU. Surprisingly
in some cases, with CUDA 5.0, -arch actually produced a
slower kernel.

4.4 Validation
The final speeds quoted for each GPU are given by run-
ning the final kernels on ten configurations not used in the
pre- post- or evolutionary stages. In total these amount to
16 816 875 test cases. In all cases the optimised kernel had
an error of 0.000107 or less. On the newest GPU, the op-

Table 4: Post-GP Best program length (column 2).
After bloat removal length (column 3). Column 4
contains the final automatically generated patch to
the manual code.
GPU GP len Optimised Program

NVS 290 39 8 <291>+<285> <283>+<249>
constantBasis directxBasis

<249>+<255> <288>+<283>
<249>+<251> <248>+<288>

GTX 295 25 1 constantBasis

T10 38 1 constantBasis

C2050 26 10 <230>+<283> <252>+<251>
c_UseBSpline <230>+<291> RemX

<237>+<292> <IF 245><IF 167>
<288>+<293> <IF 239><IF 167>

<238><249>
GTX 580 39 3 constantBasis <251>+<283>

<IF245><IF167>
K20c 19 4 <288><232> <IF245><IF167>

<288>+<293> directxBasis

timised kernel is more than two thousand times faster than
the host CPU (K20c Tesla v. 2.67GHz Intel server).

There is little evidence of over fitting with performance
on the unseen examples being close to those used to train
the GP population.

Depending upon GPU the genetically improved kernel is
from 7 to 39 percent faster than the human code (See Fig-
ure 4).

4.5 Evolution of Genes and their Phenotypes
For space, we limit our discussion to common mutations used
in the final kernels. constantBasis (Section 3.1.2) prospers
in all the sm 1x GPUs occurring in almost all members of the
final GP populations. However both the later GPUs prefer
fetching from textures and constantBasis is removed from
most of their GP individuals. With the NVS 290, GTX 295,
GTX 580 and Tesla T10, constantBasis is part of the best
of run individual and survives the bloat cull process (Sec-
tion 4.3) to give a speed up in the optimised kernel (see
Table 4).

Except in the case of the C2050 Tesla, directxBasis is
strongly preferred by evolution and appears in most GP in-
dividuals by the last generation, including the best of run
individual. (Despite our high mutation rate, directxBasis
is extinct in the last C2050 population.) With the two pow-
erful high clock rate sm 1x GPUs, directxBasis is removed
with the bloat by the post evolution clean up phase and only
figures in the kernel optimised for the least powerful or slow-
est clocked GPUs (NVS 290 and K20c Tesla).

4.6 Evolved Code and its Implications
The following sections describe in detail the impact of all the
mutations that survive the bloat removal stage (see Table 4)
and thus (as single genes) have a beneficial impact. Much of
the explanation is devoted to why a change does not cause
errors. However there are cases (e.g. in Section 4.6.4) where
evolution found surprising ways to improve the parallel code.

956

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

K20cGTX 580C2050T10GTX 295NVS 290

P
er

ce
nt

 s
pe

ed
up

Ten verification images

Figure 4: Speedup of CUDA kernel after optimisa-
tion by GP, bloat removal and with optimal block
size and -arch compared to hand written kernel with
default block size (192) and no -arch. Unseen data.

4.6.1 Quadro NVS 290
Inserting additional copies of line 283 before line 283 has no
effect since they always set the variable remz to the same
value. Clearing variable displacement multiple times (by
inserting copies of line 288) before its first use on line 292
has no effect. Line 251 sets variable indexXYZ to its correct
value. After line 251 it is used and updated multiple times.
However setting its value (by inserting copies of line 251)
before line 251 has no effect. Variable nodeCoefficientD

is set by reading from a texture on line 255 after which its
value is used multiple times.

As long as there is one instance of line 249 (at or before line
249) inserting additional copies has no effect as they always
overwrite variable indexYZ with the same value. Inserting
copies of line 249 and line 283 before line 288 has no effect
since in both cases the efected variables (indexYZ and remz)
are over written with their current values. Inserting another
copy of line 285 before line 291 has no effect (it over writes
variable tid2 with its current value).

4.6.2 GeForce GTX 295
The GTX 295 is actually a twin GPU (approximately two
GTX 280s in a single board). However each of its halves
is programmed and used separately. Therefore we report
figures for just one half of it. After bloat removal the kernel
optimised for the GTX 295 only uses the constantBasis

configuration control gene (Section 3.1.2).

4.6.3 Tesla T10
Again we report figures for a single GPU, although phys-
ically four GPUs are co-located. After bloat removal the
kernel optimised for the Tesla T10 only uses the constant-

Basis configuration control gene (Section 3.1.2).

4.6.4 Tesla C2050
The c_UseBSpline and RemX genes are both used by the op-
timised C2050 kernel. They were described in Section 3.1.2.
c_UseBSpline is only used in one place, in an if. Telling
the nvcc compiler it will always be true, means it does not
have to generate code for the branch itself or for the else

condition. c_UseBSpline appears in between a quarter and
three quarters of the final GP populations and in most of
the best of run individuals. However, its advantage seems
to be quite small since it is removed along with the bloat in
all but the C2050.

As above, since the original code to set a variable (basis
or remz) is retained copying the line of code which write to
it before it is used has no effect. Evolution used interacting
genes to insert multiple lines of code before line 230. It is
not clear if this is why our anti-bloat program simplifier was
unable to remove these duplicates or if indeed there is some
other effect, such as interaction with the hardware or the
nvcc optimising compiler’s register allocation, that causes
the more verbose code to be more efficient.

Inserting a copy of line 292 before line 237 has no effect
since the variable (displacement.x) is reset by the original
code before it is used.

Line 238 relative=relative>0?relative:0.f; is designed
to ensure that float relative is never negative. How-
ever the line above will ensure it never is. Hence removing
line 238 improves the code. The mutation which deletes it
(<238><249>) also adds a copy of line 249 in place of line
238. However this has no deleterious effect since the vari-
able indexYZ it writes to is reset (by the original code) before
indexYZ is used.

Replacing the if condition on line 245 with that on line
167 is a really innovative optimisation. Firstly line 245 is
inside the conditional code controlled by the if on line 167
and therefore the condition must have been true at line 167
(and in fact the compiler can see that it must still be true
on line 245). Hence in the mutant, the compiler can re-
move the code to test the condition. The original condition
(threadIdx.x & 31) < 16 is false half the time. It was de-
signed to use 16 threads to calculate 16 values and store
them in on-chip shared memory. It was intentional that the
other 16 threads (per warp of 32) do nothing. But if the
condition is removed, all threads run in synchrony (which
is actually cheaper than having half of them idle) and cal-
culate the 16 values twice. When the 32 threads all try to
write to 16 shared locations, it is defined that only 16 will
succeed. But 16 threads will write the correct values to the
16 shared locations. (The writes from the other 16 threads
will simply be discarded.) I.e., GP has removed an operation
((threadIdx.x & 31) < 16) and also made the following 23
lines of code slightly more efficient.

The if on line 239 is always true. It appears evolution
has repeated its trick of replacing it with another condi-
tional which must also be true (again copied from line 167)
and thus allowing the compiler to remove it. However the
c_UseBSpline gene is also used which has the same effect.
It’s not clear why the post-evolution bloat removal retained
both.

The mutation <252>+<251> makes a copy of line 251
setting variable indexXYZ to exactly the same value. Doubt-
less nvcc can spot this and optimise it away but again it is
unclear why the bloat removal stage did not remove it itself.

Mutation <288>+<293> adds updating displacement.y

immediately before it is set to 0.0f. So it obviously has no
effect and hopefully nvcc sees this and removes it. But yet
again we would have hoped the anti bloat system would have
removed it.

957

4.6.5 GeForce GTX 580
Pre-calculated spline coefficients are read from __constant__

memory rather than read from textures (constantBasis,
Section 3.1.2).

Evolution has again used the trick of removing
(threadIdx.x & 31) < 16. (Described in detail for the
C2050 optimised kernel, Section 4.6.4.)
<251>+<283> creates a copy of remz = thread/5; before

remz is used. It is not clear why this is beneficial, perhaps
it reduces warp divergence since the copy is executed by all
32 threads, rather than just 25.

4.6.6 Tesla K20c
The directxBasis configuration control (see Section 3.1.2)
gene is enabled.

Evolution has again used the trick of removing
(threadIdx.x & 31) < 16. (Described in detail for the
C2050 optimised kernel, Section 4.6.4.)

Evolution has used two genes <288><232> <288>+<293>
to insert a copy of line 293 in place of line 288. Variable dis-
placement is initialised when it is declared and so evolution
has spotted clearing it again on line 288 is not needed. How-
ever it has been partially replaced by an expression which
updates only its y component. This appears to be safe only
because variable basis is zero. Inserting a copy of line 232
is safe since it recalculates the same value. However since
its output nodeAnte.z is not used after line 232 the nvcc
compiler will probably spot this and remove the redundant
code. Possibly the change is not removed by the post evo-
lution clean up as there are two genes involved.

5. DISCUSSION
Performant parallel programming remains difficult [4]. Af-
ter several decades of compiler development, it is widely ac-
cepted that completely automatic parallelisation using com-
piler technology is infeasible. Instead nVidia’s parallel com-
piler throws the main tasks of parallel algorithm design and
implementation back onto the user. Some in nVidia [9] have
advocated this approach be taken further and suggest in-
stead of the programmer coding a solution they should aim
to use C++ templates to code generic solutions which the
compiler or other tools can tailor, either at compile or run
time, to the available hardware. Indeed in future this might
take the form of a JIT“just-in-time”approach which dynam-
ically adjusts the code to actual usage [1]. However instead
of easing the already insurmountable load on the human
programmer a further level of indirection makes it worse.

Ryan [12] and ourselves [6] have shown with very different
approaches, that starting with sequential code GP may be
able to generate parallel code. We have previously shown
GP may substantially improve existing code [5] by tailoring
it for a specific task and maintain legacy software for new
hardware [7]. Here, instead of creating parallel code from
scratch, we use GP to improve existing parallel code. There
are some similarities with [9] in that our grammar exposes
key parameters to the evolutionary process.

6. CONCLUSIONS
A combination of genetic programming acting via a simple
automatically produced BNF grammar in combination with
simple post evolution bloat removal and tuning of two key
compile time CUDA parameters (block size and compute

level) can tune state of the art hand coded critical compo-
nents of medical imaging C++ software. During evolution
GP discovered novel and interesting optimisations which
may be applied (either automatically or directly) by other
software engineers (Section 4.6.4). The resulting graphics
card software has been both specialised to the problem and
tuned to get the best from a wide range of nVidia hardware
(spanning five years since they were launched and more than
two orders of magnitude in processing power). The improve-
ment on manual coding varies with GPU type but can ex-
ceed 35% on out of sample tests. The evolved and optimised
kernels have been run on many millions of tests, all of their
answers have been compared to the “gold standard” of run-
ning the original Nifty Reg code on the CPU. The difference
is always within expected floating accuracy.

Acknowledgements
I am grateful for the assistance of the anonymous review-
ers. Tesla donated by nVidia. Funded by EPSRC grant
EP/I033688/1. Code etc. in http://www.cs.ucl.ac.uk/staff/
W.Langdon/ftp/gp-code/niftycuda.tar.gz

7. REFERENCES
[1] Harman, M., Langdon, W. B., Jia, Y., White,

D. R., Arcuri, A., and Clark, J. A. The GISMOE
challenge: Constructing the Pareto program surface
using genetic programming to find better programs. In
ASE 2012, ACM, pp. 1–14.

[2] Harman, M., Langdon, W. B., and Weimer, W.
Genetic programming for reverse engineering. In
WCRE, (Koblenz, Germany, 14-17 Oct. 2013), IEEE.

[3] Harris, C. An investigation into the Application of
Genetic Programming techniques to Signal Analysis
and Feature Detection. PhD thesis, UCL. 1997.

[4] Langdon, W. Creating and debugging performance
CUDA C. In Parallel Architectures and Bioinspired
Algorithms, F. Fernandez de Vega, J. I. Hidalgo Perez,
and J. Lanchares, Eds., Springer, 2012, ch. 1, pp. 7–50.

[5] Langdon, W. B., and Harman, M. Optimising
existing software with genetic programming. IEEE
Transactions on Evolutionary Computation. Accepted.

[6] Langdon, W. B., and Harman, M. Evolving a
CUDA kernel from an nVidia template. In WCCI
(Barcelona, 18-23 July 2010), IEEE, pp. 2376–2383.

[7] Langdon, W. B., and Harman, M. Genetically
improved CUDA C++ software. In EuroGP 2014 .

[8] Liu, Y., and Suvranu, D. CUDA-based real time
surgery simulation. Studies in Health Technology and
Informatics 132 (2008), 260–262.

[9] Merrill, D., Garland, M., and Grimshaw, A.
Policy-based tuning for performance portability and
library co-optimization. In Innovative Parallel
Computing (InPar), 2012 , IEEE.

[10] Owens, J. D., Houston, M., Luebke, D., Green,
S., Stone, J. E., and Phillips, J. C. GPU
computing. Proc. of the IEEE 96, 5 (2008), 879–899.

[11] Poli, R., Langdon, W. B., and McPhee, N. F.
A field guide to genetic programming. Published via
http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008.

[12] Ryan, C. Automatic Re-engineering of Software Using
Genetic Programming. Kluwer, 1999.

958

http://www.nvidia.com
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/I033688/1
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/niftycuda.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/niftycuda.tar.gz
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2012_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2013_WCRE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/harris_thesis.html
http://dx.doi.org/10.1007/978-3-642-28789-3_2
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2014_EuroGP.html
http://dx.doi.org/10.1109/InPar.2012.6339597
http://dx.doi.org/10.1109/JPROC.2008.917757
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.lulu.com/shop/riccardo-poli-and-william-b-langdon-and-nicholas-freitag-mcphee/a-field-guide-to-genetic-programming/paperback/product-2502912.html
http://www.gp-field-guide.org.uk
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ryan_book.html

	Introduction
	Nifty Reg Kernel
	Evolving CUDA C++ code viaa BNF Grammar using GP
	Configuration Macros
	c_UseBSpline and c_controlPointVoxelSpacing
	BNF rules controlling conditional compilation

	Linear Genetic Representation
	Genetic Operators
	Initialisation
	Mutation
	Crossover

	Ensuring for Loop Termination
	Protecting Array Indexes
	Ensuring Compilation, C++ Scope
	Efficient Operation of Evolutionary Search
	Error and Execution Time Based Fitness
	50% Truncation Selection

	Optimising Nifty Reg Kernels
	Random Fitness Test Cases
	Pre-Evolution Parameter Tuning
	Post Evolution Clean Up and Re-Tune
	Validation
	Evolution of Genes and their Phenotypes
	Evolved Code and its Implications
	Quadro NVS 290
	GeForce GTX 295
	Tesla T10
	Tesla C2050
	GeForce GTX 580
	Tesla K20c

	Discussion
	Conclusions
	References

