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ABSTRACT
We genetically improve BarraCUDA using a BNF grammar
incorporating C scoping rules with GP. Barracuda maps
next generation DNA sequences to the human genome us-
ing the Burrows-Wheeler algorithm (BWA) on nVidia Tesla
parallel graphics hardware (GPUs). GI using phenotypic
tabu search with manually grown code can graft new fea-
tures giving more than 100 fold speed up on a performance
critical kernel without loss of accuracy.
Categories and Subject Descriptor I.2.8 [search]: heuristic
I.2.2 [Artificial Intelligence]: Automatic Programming
D.2.8 [Software Engineering]: Metrics[complexity measures,
performance measures]
Keywords SBSE; GPGPU; Bioinformatics; Genetic improve-
ment

1. INTRODUCTION
Modern Biology is an increasingly data rich science. The
central dogma of Biology states that the fundamental infor-
mation for all forms of life is encoded in the DNA carried
by every living cell. Next generation DNA sequencing ma-
chines were crucial to the decoding of the human genome in
2000 [5] and since have been used to decode the genomes of
many other species and to map the variation of individual
human genomes [1]. In a single run modern NextGen scan-
ners can give hundreds of millions of short DNA sequences.

Typically before the (noisy) data are used their DNA se-
quence is located in a reference genome, such as the hu-
man genome. Since each can be compared to the refer-
ence genome independently, a common strategy is to run
multiple instances of the DNA look up software in paral-
lel. Barracuda [6] takes the approach of parallel running
on GPU hardware. It is essentially a port of the well es-
tablished BWA tool [17] written in nVidia’s CUDA dialect
of the C programming language. Before genetic improve-
ment [8], on typical 100 base pair (bp) DNA data from
The 1000 Genomes Project [1], with a top end Tesla K40
GPU, Barracuda processed on average 16 000 sequences per
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Figure 1: Distribution of speed and num-
ber of changes in top 500 correct Tesla K20
cuda_find_exact_matches kernels.

second. Figure 1 shows more than 100 fold speedup for a
performance critical component of Barracuda during genetic
improvement.

Barracuda, now including some of the genetic improve-
ments described in Section 3.1, is available via Source Forge.
(We evolved improvements to Barracuda release 0.7.0). Bar-
racuda has been under development since 2009. It comprises
49 C source and include files containing more than 8000 lines
of code, containing six CUDA kernels. (In [10] we evolved a
complete kernel, whereas here GP [20] improves an existing
kernel.) The code which aligns the sequences is largely im-
plemented by the cuda_split_inexact_match_caller ker-
nel, which makes heavy use of code in common with cuda_

find_exact_matches. Typically 85% of NextGen DNA data
generated by The 1000 Genomes Project matches the refer-
ence human genome exactly. Our approach is to concen-
trate upon these data and generate huge speed ups with
the cuda_find_exact_matches code. DNA sequences which
do not match exactly are passed to cuda_split_inexact_

match_caller to be dealt with in the usual way. The com-
plete GPU (device) alignment code is 696 lines of CUDA,
whilst the GP works with 200 of these.

On a 2 496 processor Tesla K20 GPU, the original code
could process on average 15 000 100bp sequences per sec-
ond. (Bowtie2 typically processes more than 5000 such se-
quences per second per CPU core [9, Fig. 10].) The op-
timised cuda_find_exact_matches kernel processes well in
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excess of a million such sequences per second. However, we
must bear in mind that this speed up will be diluted by
the rest of the code, nevertheless the lessons provided by
GP on the exact code may possibly be applied to the whole
program.

The next section describes our GP system, including the
introduction of phenotypic tabu search, whilst Section 3 de-
scribes the results of applying it to Barracuda which include
average speeds of 1.8–2.4 million 100bp DNA sequences per
second (depending on hardware, i.e. K20 or K40). Section 4
includes discussion of our evolutionary process and the ulti-
mate speedup we might get and Section 5 concludes.

2. GENETIC IMPROVEMENT SYSTEM
The manually produced CUDA code was automatically con-
verted into a BNF grammar which describes each of its 200
lines, line by line [12, 19]. (Figure 2 contains fragments of
the whole grammar.) The GP uses the grammar to control
the mutations the GP can make. The grammar ensures that
after each mutation the new code is still syntactically correct
(but see Section 2.3).

2.1 Fixed Representation Parameters
The manually produced kernel has 15 configuration options
which GP can selectively enable or disable by conditional
compilation (see Table 2). This includes allowing evolution
to set the number of threads used per DNA sequences query
and the number of threads per block to all reasonable val-
ues. (Number of configuration options = (213 × 7 × 37 =
2 121 728.) The first part of each GP individual is of fixed
length and codes each of these 15 options. (Figure 3 con-
tains part of an example GP individual.) The second part
describes each code mutation the GP individual makes via
the grammar. Since the second part can contain any number
of mutations: the search space of code changes is effectively
unlimited. Notice unlike a traditional GA, our GP does not
start at random but instead starts from the default (man-
ually written) code. This is similar to seeding the initial
population [14].

2.2 Variable Code: Grammar Types
Each line of the source code is represented by one or more
rules in the BNF grammar. Evolution can change the con-
tents of the kernel but is not permitted to change its struc-
ture. So it cannot remove any of the seven functions, their
arguments (except as already permitted by manually writ-
ten conditional compilation), declarations or return or other
control flow statements. However, it can substantially change
the code inside functions and between flow control state-
ments including whether functions are called or not. Each
variable rule belongs to one of nine types. Mutations only
move code between rules of the same type.

43 of the variable rules are simple lines, almost all be-
ing assignments (e.g. < Kkernel bnf.cu 126> in Figures 2
and 3). Subject to the scoping rules, they can be exchanged
with each other, or indeed inserted before other statements.

. . . cache_threads=4 ... <_Kkernel_bnf.cu_126>

Figure 3: Fragments of GP individual which sets
the cache_threads configuration option to 4 (see Ta-
ble 2). The code mutation <_Kkernel_bnf.cu_126>

means that line 126 is deleted (see Section 2.6).

There are 24 IF rules. Mutation can delete these by sim-
ply setting the condition to always false or (subject to the
scoping rules) it can replace the conditional part with the
conditional part of another IF rule. There are also two ELSE
rules.

There are 7 variable C for loops. for loop headers are
split into their three components (by the ;). Subject to
scooping rules, for1 type rules can be replaced by other for1
rules, for2 by for2 and for3 by for3. However in 4 cases
the first part of the for loop includes a declaration (such as
for(int i = 0;. . . ) and so is not variable. We force loop
termination via the grammar. The conditional part, for2, of
every for loop includes testing that a local counter has not
exceeded its maximum value. Evolution is not permitted
to disrupt this in any way. The maximum value is set to
twice the maximum number of iterations used in any loop
in the manually written code. There is no special penalty on
exceeding this limit, instead the fitness function will penalise
kernels that calculate incorrect answers or run for a long
time. The remaining three types are specials for CUDA.

The CUDA compiler allows the programmer to suggest
(via a #pragma) that it unroll for loops. The grammar al-
lows GP to use unroll pragma before every for loop and rely
on the fitness function to see if the effect is beneficial. The
default is not to use #pragma. Optionally each #pragma un-

roll statement takes an integer value from 1 to 11. Again
evolution can chose to use this or not.

The compiler supports __restrict__ on kernel and CUDA
device functions. For nVidia GPUs since the K20, if all ar-
ray arguments are marked __restrict__, the compiler may
access read only arrays marked const via a small read-only
cache. Actually this cache is shared with texture data. Since
the texture cache may already be in use, it is not clear if re-
using it as a read-only data cache will be beneficial. Instead
the choice is left to evolution. To support this, the grammar
has a single <optrestrict rule which evolution can enable
or disable. The grammar links all array and pointer argu-
ments so that they are all marked with __restrict__ or not
together. By default __restrict__ is enabled.

The last CUDA special is the <launchbounds rules. These
can appear immediately before the kernel is declared. The
grammar allows evolution to choose to use it if it wants but
ensures the __launch_bounds__ syntax will be correct and
relies on the fitness function to see if it has any benefit. The
default is not to use __launch_bounds.

The 15 configuration options are implemented via a com-
bination of C macros and conditional compilation. Evolu-
tion sets and clears these directly.

2.3 Scoping Rules
Earlier work with GP for bug fixing etc. [11, 13, 16] reported
that the main reason why code does not compile is due to
variables being moved out of scope. This is also true with
the CUDA 6.0 C compiler. Therefore, the BNF grammar
is automatically augmented with data indicating the scope
limitation of every line of the grammar that can be changed.

A simple text file is used to hold, for each of the 113 vari-
able rules, the locations the rule can be copied to. The loca-
tions are given as line numbers in the original source code.
Typically these are within the function holding the line it-
self. Fifteen rules do not depend on any variable declared in
a function and so they can be moved to any location, with
a matching type, in the kernel. In all but 0.35% of cases the

1064



Table 1: GPU Hardware. Each GPU chip contains 13 or 15 identical independent multiprocessors (MP,
column 4). Each MP contains 192 stream processors. (Total given in column 6). ECC enabled.

GPU Introduced compute level MP total cores Clock L1 cache L2 cache Memory Bandwidth

Tesla K20 2012 3.5 13 × 192 = 2496 0.71 GHz 48KB 1.25 MB 5 GB 140 GB/s
Tesla K40 2013 3.5 15 × 192 = 2880 0.88 GHz 48KB 1.50 MB 11 GB 180 GB/s

<Kkernel_bnf.cu_118> ::= "unsigned int tmp = *data;\n”
· · ·

<Kkernel_bnf.cu_119> ::= " if” <IF Kkernel bnf.cu 119> " \n”
<IF_Kkernel_bnf.cu_119> ::= "(*lastpos!=pos shifted)”

· · ·
<Kkernel_bnf.cu_126> ::= "” < Kkernel bnf.cu 126> "\n”
<_Kkernel_bnf.cu_126> ::= "*lastpos=pos shifted;”

· · ·
<okdeclaration_> ::= "#ifndef OKDEC\n” "OKDECLARATION\n” "#define OKDEC 1\n” "#endif
<okdeclaration_End> ::= "#ifdef OKDEC\n” "#undef OKDEC\n” "#endif /*OKDEC*/\n”
<Kkernel_bnf.cu_415> ::= <okdeclaration > <pragma Kkernel bnf.cu 415> "for(” <for1 Kkernel bnf.cu 415>

";” "OK()&&” <for2 Kkernel bnf.cu 415> ";” <for3 Kkernel bnf.cu 415> ”)
((ldg t*)mycache)[x/inc] = load(x);\n”

<pragma_Kkernel_bnf.cu_415> ::= "”
<pragma_K0> ::= "#pragma unroll \n”
<pragma_K1> ::= "#pragma unroll 1\n”

· · ·
<pragma_K11> ::= "#pragma unroll 11\n”
<for1_Kkernel_bnf.cu_415> ::= "”
<for2_Kkernel_bnf.cu_415> ::= "x<cache loads”
<for3_Kkernel_bnf.cu_415> ::= "x+=inc”

Figure 2: Five fragments of the 200 rule BNF grammar describing the human coded kernel which is evolved
by GI. <Kkernel bnf.cu 118> is fixed and cannot be evolved. It simply describes line 118. The grammar
can be thought of as having an implicit “start” rule for each line of source code. The conditional part of
the if on line 119 is given by <IF Kkernel bnf.cu 119>. GI mutation can replace "(*lastpos!=pos_shifted)"

with code taken from another IF. < Kkernel bnf.cu 126> is variable and can be deleted, replaced by another
variable rule (starting with < ) or another variable rule can be inserted before it. <okdeclaration > onwards
are rules automatically generated to support the for loop on line 415. The OK() macro detects and aborts
excessively long loops. Evolution can insert #pragmas. The three components of the for loop are described
by <for1 Kkernel bnf.cu 415> etc.

scoping rules ensure mutated code compiles (see Figure 4).
The only cases where mutants do not compile relate either
to conditionally compiled code or to C macro definitions,
which do not follow the normal nested scope rules.

2.4 Genotypic and Phenotypic Tabu Search
Initially, some mutations had absolutely no effect as they
changed code which was then removed by conditional compi-
lation. To avoid excessive silent mutations in hidden C code
we introduced a two stage tabu search to GP.

The tabu list takes two forms: genetic and phenotypic.
Nothing is removed from either, i.e. they grow with each
generation. The genetic tabu list is simply every genotype
that the GP has tried so far. Notice, even though we know
there is some noise in the fitness function, we do not allow
the GP to re-try complete solutions and its search is forced
to diverge.

To prevent conditional compilation from hiding mutations,
before GP individuals are compiled into object code the
gcc -E C pre-processor is used to convert the GP modified
source code into its“phenotype”. We take a mutant’s pheno-
type to be its code after conditional compilation and macro
expansion. If a mutation changes only code excluded by
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Although the BNF grammar and scoping rules en-
sure most mutant kernels compile, typically about
30 of 1000 do not (×).
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Table 2: Fixed parameters for improving Barracuda. 3rd column is default. 4th column is number of lines of
code directly affected in the default CUDA kernel.

BLOCK_W int 64 all threads per block. Must be a power of 2 (up to 32) or a multiple of 32 up to 1024.
cache_threads "" int "" 44 number of threads used to load the human genome cache. Must be a power of 2 (up

to 32) if used or "" if not used.
kl_par binary off 19 Calculate “k” and “l” in parallel. Doubles the number of threads per sequence.
occ_par binary off 76 Do bwt_cuda_occ1 loop in parallel (needs cache_threads)
many_blocks binary off 2 Allows number of blocks to exceed 65536 at the expense of more complex index

calculations
direct_sequence binary on 63 Allows bwt_cuda_match_exact to read the next DNA base pair directly from global

memory rather than using a local array to buffer the query sequence.
direct_index binary on 6 Calculates location of queries in global memory by requiring them all to be of the

same size thus avoiding indirection via sequences_index_array

sequence_global binary on 16 read DNA queries directly from global memory rather than via a texture.
sequence_shift81 binary on 30 Use >> rather than switch to unpack DNA base pairs (off no longer supported)
sequence_stride binary on 14 For efficiency DNA queries are blocked in 32 int (off no longer supported)
mycache4 binary on 12 Read human reference genome via cache in 4 int (i.e. 16 bytes) units.
mycache2 binary off 11 Read human reference genome in 2 int units. only active if mycache4 is disabled.

If neither mycache4 nor mycache2 are active then the cache is loaded one int at a
time.

direct_global_bwt binary off 2 read human reference genome from global memory directly. The default is to read
it via __ldg().

cache_global_bwt binary on 65 Read human reference genome via cache.
scache_global_bwt binary off 35 Use up to 16 local scalars (rather than local array) to implement human reference

genome cache. Ideally this means the reference genome cache is held in up to 16
registers rather than in half an L1 cache line.

conditional compilation, the post process code will be iden-
tical to the post process code of its parent and therefore it
will be excluded by the tabu list. The phenotypic tabu list
is simply implemented by keeping the post processed source
code of every GP individual accepted into the population at
each generation. At 340 MB, the tabu lists remains manage-
able even after 50 generations. (See also Figure 4.) Hashing
these text files might be necessary with bigger populations
or more long running GPs. If a mutation is discovered to
have the same phenotype as another GP individual it is dis-
carded and another is created.

The phenotypic tabu list is sufficient. However, the geno-
typic tabu list is also retained since it is easy to detect ge-
netic duplicates and this avoids the overhead of generating
source code and running the pre-processor.

We have treated the C source code after pre-processing
as the individual’s phenotype (rather than its run-time be-
haviour). This could be extended to later in the compiler
tool chain. E.g. we could treat the assembler or even bi-
nary machine code as the phenotype. With simple com-
piler/assembler hierarchy this has been done [18]. However,
the nVidia GPU tool stack includes both an optimising as-
sembler and the possibility of just-in-time compilation at
kernel load or launch time. The possible presence of version
numbers, file names and time stamps embedded in binary
files also complicates using differences later in the tool chain
as proxies for difference in program behaviour.

2.5 Initial Population
The initial population of 1000 GP individuals is created us-
ing mutation. The genotypic and phenotypic tabu list are
initialised with the empty (default) individual. This ensures
each member of the initial population is unique.

2.6 Mutation and Crossover
Each member of the breeding pool, i.e. the top 500 indi-
viduals from the previous generation, is allocated two chil-
dren. One child is created by mutating the parent. The
second is created by crossover between it and another par-
ent randomly selected from the breeding pool. If fewer than
500 individuals in the previous generation were selected, the
missing children are created at random in the same way as
the initial population was created (but subject to the now
longer tabu lists).

Half the mutations are changes to the configuration and
half are code mutations. With configuration changes, one of
the fifteen parameters is chosen uniformly at random. There
is a one in five chance it will be reset to its default value.
For binary parameters, mutation simply flips their current
value. If cache_threads is chosen and is currently undefined
half the time it will be set to its default value (4), and half
the time it will be set to one of its six legal numeric values.
If it already has a numeric value half the time another value
is chosen at random and half the time a neighbouring value
is chosen. Mutating BLOCK_W follows the same strategy of
making large jumps half the time and neighbouring moves
the other half.

Our code mutations were inspired by those of Le Goues
et al. [16] but act on the grammar at the level of lines of
code rather than abstract syntax trees at the statement
level. New code mutations are made by appending an-
other code mutation onto the current mutation list. There
are three types of code mutation: delete a line (e.g. right
hand end of Figure 3), copy and replace the target line
and copy and insert before the target line. E.g. <_Kker-

nel_bnf.cu_948><_Kkernel_bnf.cu_927> causes line 948
*l0 = l; to be replaced with line 927 ((int*)k0)[1] =

__shfl(((int*)&k)[1], 0, threads_per_sequence); Insert
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mutations are denoted by a + between the rule names. For
example, <_Kkernel_bnf.cu_852>+<_Kkernel_bnf.cu_922>,
which causes line 922 *k0 = k; to be inserted before line 852
*k0 = 0;

Crossover acts on the genetic representation. It creates a
new child with the fixed parameters and a variable length
list of code changes obtained from its two parents. The
fixed part is obtained by performing uniform crossover [22]
on the 15 compulsory parameters, whilst the list of code
changes is given by two point crossover, like Koza’s sub-tree
crossover [7]. Notice crossover only selects genes from its two
parents, it does not create new ones. If crossover is unable to
create a new unique offspring after a small number of tries,
the child is created by mutating the parent instead.

2.7 Fitness Function
It is well known that compiling the population in one go is
typically more efficient than compiling each member of the
population individually [4]. Therefore, all 1000 GP individu-
als are converted into a single file that is compiled and linked
with the rest of Barracuda to give a single image that runs
the 1000 kernels one at a time on about 16 megabytes of the
same randomly chosen part of a randomly chosen example
file downloaded from The 1000 Genomes Project’s FTP site
(see Section 3.3).

To allow even loading of the GPU, the number of DNA
query sequences run in parallel is chosen to be a multiple
of the number of stream processing cores in the GPU, see
Table 1. Thus fitness testing on the K20 processes 159744
queries in parallel, while on the K40 161280 are used.

In order to be able to compare the genetically improved
code with the original, the first kernel compiled and run
is always a copy of the default (manually written) code.
I.e. 1001 kernels are compiled and run. Running the com-
piler typically takes 71% of the total run time. (Mutation
and crossover, including checking the tabu lists, takes about
9% and running the kernels and checking their answers takes
about 18%. The rest is housekeeping such as monitoring de-
vice temperatures.)

We did not investigate parallel compilation, but given that
the GPU’s are hosted by powerful multicore cluster servers,
it would be possible to split the population and compile it
in a number of parallel streams [2].

Although our scoping rules (Section 2.3) eliminate almost
all compilation errors, there are on average 51 errors per gen-
eration (see Figure 4). When a compilation fails, the kernels
responsible are eliminated from the population and the new
population is compiled. Typically only 1 or 2 attempts at
compilation are needed. Notice that the compiler detects
and reports errors in a fraction of the time it needs to gen-
erate optimised machine code, so running the first part of
the compilation process multiple times is a small overhead.

2.7.1 Fitness testing: Burrows-Wheeler algorithm
There are two components to the fitness function: the qual-
ity of the answers returned and the speed at which the kernel
executes. Quality is measured by comparing all of each ker-
nel’s answers one at a time with those given by the reference
kernel. Thus each kernel is tested more than 100 000 times.
Speed is measured using the GPU’s own clocks.

The Burrows-Wheeler algorithm uses two pointers: “k”
and“l”, which not only indicate where the sequence occurs in
the (compressed) human genome but also they indicate the

range of possible locations it may match within the reference
genome. Also the difference between them is the number of
potential matches. k and l are initialised to span the whole
of the human genome. As the search proceeds k and l should
rapidly approach each other. If the query sequence is not
present this is indicated by k exceeding l. If it occurs more
than once then k and l will always be a certain distance
a part. (This distance is actually the number of repeats.)
Barracuda does not deal with ambiguous DNA base pairs in
the query sequence, instead it stops the search immediately
and reports this by setting k to zero. When the unmodified
kernel is run, the k,l pairs it calculates for each query DNA
sequence are stored. The fitness of each genetic variant is
calculating by comparing the k,l pairs it calculates against
those of the reference code. For each test case:

k = 0 (i.e. unknown base N in query sequence). Fitness penalty
of 100 unless evolved kernel also sets its k to zero.
(k’ and l’ refer to the k and l values calculated by
the mutated kernel.) If the evolved kernel says the se-
quence does match (i.e. k’ ≤ l’) then also get another
penalty of 100 (Notice otherwise l’ is not checked.)

k > l (i.e. query DNA sequence is not in human reference
genome). if k’ ≤ l’ (provided k’ 6= 0) then get a penalty
of 100.

k = l (i.e. exact unique match)

k’ > l’ or k’ = 0 then penalty of 100

k’ < l’ then penalty is the number of matches the GP
kernel predicts more than it should have, up to a
maximum of 100.

else (i.e. the GP also says they match) the penalty
is the distance between k and k’, up to a maxi-
mum of 10 and the same for the distance between
l and l’.

k < l (i.e. more than one match)

k’ > l’ or k’ = 0 then the penalty is 100

k’ ≤ l’ i.e. GP also says more than one match)

The penalty is the difference between the number
of matches calculated by the GP and the true
number, subject to not exceeding 50.

else (i.e. GP reports there is a unique match) the penalty
is the distance between k and k’, up to a maxi-
mum of 10 and the same for the distance between
l and l’.

2.7.2 Elapse time measurement and variation
Generally, runtimes on GPUs are quite stable. Typically the
measured standard deviation is only 0.2% of run time.

2.8 Selection
Like fitness, selection has two parts. Firstly, to be selected
a GP individual must get no fitness penalties. Notice there
are some cases (actually where the query sequence itself was
ambiguous) where a program may get the right answer even
though its answer differs in detail from that given by the
manually written code. Secondly, it must be faster than the
reference code. To allow for noise in the timing, by faster we
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Table 3: GP to improve Barracuda

Representation:
Fix 15 discrete parameters (Table 2) plus a variable list of
replacements, deletions and insertions into BNF grammar

Fitness:
Compile modified code. K20 run on 159744 (2496 × 64)
(K40 161280 = 2880 × 56) 100bp sequences selected at
random from recent NextGen DNA scans generated by The
1000 Genomes Project, Section 3.3. Compare its answers
and run time with that of original kernel on the same hard-
ware. See Sections 2.7 and 2.8.

Population:
Panmictic, non-elitist, generational. 1000 members.

Parameters:
Initial population of random single mutants. 50% trunca-
tion selection. 50% two point crossover, 50% mutation. No
size limit. Stop after 50 generations.

mean the number of GPU ticks it took must be more than
one million tics less than the human written code.

At the end of each generation the kernels whose answers
attracted no fitness penalties and were faster than the hu-
man written code are sorted by their runtime and the first
500 are selected to be parents of the next generation.

3. RESULTS
The GP was run with a population of 1000 for fifty gen-
erations (see Table 3). Differences between the K20 and
K40 are expected since they have different numbers of pro-
cessors, clock speeds and memory bandwidths (see Table 1).
Thus possibly evolution may find different trade offs between
compute and memory operations in the two cases. Also evo-
lution is open to stochastic variations, inherent in using real
online timings (Section 2.7.2).

3.1 Choosing the Winner: Tesla K20
In one K20 run the final population contained 703 kernels
better than the default starting program, 456 produced iden-
tical answers (see Figure 1).

The fastest correct program (11 mutations in Figure 1)
contains three configuration changes and eight code changes
(see Figure 5). The first configuration change (scache_
global_bwt) switches from using a local memory array to us-
ing 4 uint4 held in registers for the reference genome cache.
The second (cache_threads=2) dedicates two threads per
query. These are used for loading the reference human genome
into this cache. The third (BLOCK_W=128) doubles the num-
ber of threads per block from 64 to 128.

The unroll pragma (see Section 2.2) is added to two for

loops by changes 1 and 5. The first is in conditional code
which is removed during pre-processing but, as we can see
from Figure 5, the second (change 5) does indeed appear to
help speed up the code. Changes 2 and 3 are both IF which
have no effect. In the first, two conditions which are always
true are swapped. Change 3 <IF_Kkernel_bnf.cu_578> dis-
ables the if statement if(k == bwt_cuda.seq_len). Since
k is always less than bwt_cuda.seq_len the condition could
never be true so removing it does not cause the kernel to give
wrong answers. Change 4 has no effect since the variable it
changes, l0, is immediately updated by next line.
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Figure 5: Performance of the fastest correct K20
kernel in last generation as more of its program
changes are included.

Change 6, <_Kkernel_bnf.cu_126>, deletes line 126. De-
spite in-depth investigation, it is unclear why this is effec-
tive but it surely is. By deleting line 126, GP disables the
small (8 base pair) cache used when reading DNA sequences
from global memory. Ideally, CUDA will have ensured that
these sequences are accessed via the GPU’s read-only cache
but even so, it would be expected that reading the cache
8 times instead of once would be more costly. Analysis of
the CUDA compiler output and using performance tools re-
veals that deleting line 126 saves a single register but since
the number of registers used does not appear to be near a
critical number, it is not clear how this would increase per-
formance. It may simply be that by reading the data more
frequently they, and more particularly their neighbouring
data, are kept in the hardware cache. Nevertheless, despite
noise in the fitness function, GP has found this improvement,
which is encouraging, since human programmers would be
unlikely to discover it without the aid of GP.

Changes 7 and 8 also have no effect since they assign val-
ues to variables that are then immediately overwritten or
they write a value to a variable which already has this value.
In both cases we would expect the optimising compiler to
be able to remove the inserted but non-harmful code.

3.2 Evolved Programs: Tesla K40
The fastest program in the last generation of a K40 run con-
tains 9 changes. Although we shall describe the five coding
changes in the next paragraph, they have little effect. We
start by describing the four parameter changes: 1) instead of
each thread processing one DNA sequence query, it uses four
cache_threads=4. This allows the whole cache (16 words)
to be loaded simultaneously. However, GP has not enabled
other parallel processing options so each of the 4 threads re-
main synchronised and calculate the same answer four times.
Nonetheless it appears that cuda_find_exact_matches is
so I/O bound that effectively wasting three computational
threads has little down side. 2) Correspondingly evolution
increased the number of threads per block from 64 to 128
BLOCK_W=128. (This corresponds to 32 DNA queries per
block.) 3) This parameter change also relates to the soft-
ware cache. Setting direct_global_bwt=1 means the hu-
man genome is read directly from global memory rather
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than via the hardware read only cache shared with the tex-
tures. 4) Again (see Section 3.1 above) sequence_global

is disabled so that the query sequences are accessed via a
texture.

There are five code changes. Two (<_Kkernel_bnf.cu_948>
and <_Kkernel_bnf.cu_947>) delete lines 947 and 948
(*k0 = k; and *l0 = l;) The GP has “spotted” that both
k0 and l0 will have already been set to these values, so delet-
ing these lines does not effect the kernel’s answer and may
speed it up. Another mutation sets the IF on line 446 to
always false. This is fine as line 446 supports configuration
occ_par which is disabled and so line 446 can never be exe-
cuted. Disabling occ_par also means inserting #pragma un-

roll 4 before the for loop on line 443 also has no effect.
Mutation <_Kkernel_bnf.cu_852>+<_Kkernel_bnf.cu_853>

has the effect of duplicating line 853, which does not have
any harmful effects and the optimising compiler may be able
to spot this and remove the duplication.

The speed up derives from using four threads to read
data from the reference genome and grouping 128 threads
together in a block. (Disabling sequence_global and di-

rect_global_bwt have only a little effect on the K40). With
just the thread changes the K40 processes 2.4 million short
DNA sequences per second, a speed up of 54%.

On the K20, disabling sequence_global so that the DNA
query sequences are read via a texture does have a noticeable
effect. Together with BLOCK_W=128 and cache_threads=4,
it gives on the K20 a speed up of 28.8%, corresponding to
processing 1.8 million DNA sequences per second.

3.3 Performance on Hold Out Data
The training and holdout data were randomly selected from
recent popular nextGen DNA sequence data sets from The
1000 Genomes Project. (I.e. normal data, since 2 April 2012,
paired-end, non-color space, 100 base-pair per end and not
since withdrawn.) None of the hold out data had been used
to train the GP. Over ten holdout sets the median speedup
was 29.2% (49.1% on K40). The best evolved K40 program
gave 53.4% (28.3% on K20) median speedup. This is on aver-
age 1 840 000 DNA sequences per second. (2 330 000 on K40)
and the evolved K40 gives 2 410 000 (1 850 000 on K20). Re-
member cuda_find_exact_matches only completely deals
with a fraction of the sequences. Nevertheless this is a sub-
stantial improvement over 15 000 (16 000 on K40) given by
the original code averaged over all sequences.

4. DISCUSSION

4.1 Impact of Tabu Search
The impact of Tabu search is most noticeable in the initial
random population and early generations (i.e. generations 1,
2 and 3) where almost as many programs are generated and
discarded as are needed in the whole population (see Fig-
ure 4). As the population evolves the genetic operations find
it easier to create phenotypically distinct programs. While
in generation 1, only half of unique genotypes are also unique
phenotypes, after generation 4, it is 82% on average.

4.2 Effectiveness of Grammar
The BNF grammar and new scoping rules have proved highly
effective. The grammar ensures all offspring are syntacti-
cally correct CUDA kernel programs. After the first few
generations, the population evolves with the scoping rules
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Figure 6: Actual bloat (solid line) v. Price’s theo-
rem plus mutation correction (dashed line).

to ensure on average 96.7% of new kernels compile. Enforce
loop termination and array index bound protection ensures
all launched GP kernels, run, terminate cleanly and can be
assigned a fitness value. (0.06% of configurations were ille-
gal, and so the kernel was not launched.)

4.3 Price’s Theorem: Bloat Explained
Price’s covariance theorem [21] applies to the average be-
haviour of populations and assumes mutation and crossover
do not impose a bias on the population property of inter-
est. The theorem says in large populations, the correlation
in the current population between any property of interest
(e.g. a gene) and the number of children will be equal to the
change in the mean frequency of that gene between the cur-
rent population and the next. Since in GP program size is
inheritable, Price’s theorem is readily applied to programs’
lengths and so bloat is given by a positive correlation be-
tween length and fitness [15].

Notice half the time our mutation operator adds another
mutation. I.e. it does not strictly follow Price’s criterion.
However, the dashed-× line in Figure 6 adds a correction for
size changes directly caused by mutation and crossover and
the tabu requirement to avoid programs which have already
been tried. The actual increase is shown with the solid-+
line. In the initial generations the population is skewed by
randomly introduced individuals. (Which are new and hence
do not inherit from the previous generation). In later gen-
erations agreement is better.

4.4 Evolution of Fitness Diversity
Figure 7 shows that those kernels doing better than the man-
ual implementation tend to have more mutations with time
(bloat). (The median grows from 2 mutations in the initial
random population to 11 by generation 50.) The number of
kernels doing better than the manual implementation, and
so eligible to be a parent, rises steadily from 136 in the initial
population to on average 700 (over generations 10-50).

In the random population 46% of kernels compile and run
but do not exceed the manual code. This falls to 11% (av-
eraged over generations 10-50).

During evolution 96% of mutants compiled and 79% ran
and returned all correct answers and 66% had no errors and
were faster than the original code.
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4.5 Performance Limits
The cuda_find_exact_matches kernel, indeed the Burrows-
Wheeler algorithm itself, is fundamentally limited by the
speed at which the human reference genome can be read.
This is because modern GPU’s have copious compute power
for the BWA algorithm itself and the DNA query sequences
are small and can easily be well structured for parallel op-
eration. In contrast the BWA algorithm essentially requires
random access to the reference genome for each k or l look
up.

The genome data is structured so that all data for each k
or l lie close together. In about 70% of cases genome data
for k and l pairs are close to each other. (Both reasons
make the cache of human reference genome data more effec-
tive.) Nonetheless for each base-pair in each query sequence
approximately 10 integer values must be read. The soft-
ware cache always reads 16 int, even if only 5 or 6 might be
needed. With a K40 kernel processing 230 million base pairs
per second (remember 100 base-pairs per query) it will be
reading approximately 18GB per second. This is only 22%
of the available bandwidth (cf. Table 1). Suggesting that a
further factor of four is available.

5. CONCLUSIONS
Barracuda was developed from the widely used BWA tool
(according to Google Scholar [17] has been cited more than
1000 times). Barracuda’s authors [6] include both DNA se-
quencing and GPGPU experts. It has been under human
development since 2009. Nevertheless genetic programming
using phenotypic tabu search in combination with manually
grown code can graft [3] speed up changes into the CUDA
source. On large real world datasets, typical of current
high-throughput DNA analysis, the improvement in a per-
formance critical component is more than 100 times without
loss of accuracy.

Over the complete mapping process (i.e. including all the
non-CUDA code as well) on fourteen million pairs of DNA
sequences with 76 bases each (note shorter sequences than
the GP was trained on) barracuda 0.7.105 is 62% faster
than Barracuda 0.6.2. Our version of BarraCUDA has been
adopted into the core development (as barracuda 0.7.105).
In the first month after it was made publicly available it was
downloaded 146 times.
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