
SSBSE-2015, Yvan Labiche and Marcio Barros Eds., LNCS 9275, p12–28, Bergamo, Italy,
5-7 Sept. Springer. Preprint DOI:10.1007/978-3-319-22183-0 2

Genetic Improvement of Software
for Multiple Objectives

W. B. Langdon

CREST, Department of Computer Science,
University College London Gower Street, London WC1E 6BT, UK

Abstract. Genetic programming (GP) can increase computer program’s
functional and non-functional performance. It can automatically port or
refactor legacy code written by domain experts. Working with program-
mers it can grow and graft (GGGP) new functionality into legacy systems
and parallel Bioinformatics GPGPU code. We review Genetic Improve-
ment (GI) and SBSE research on evolving software.

Fitness

Improved system

Test
cases

Population of modifications

Select

Mutation and Crossover

BNF
Grammar

Population of modifications

Original
code

Modified
kernel

Fig. 1. Genetic Improvement of Program Source Code

1 Introduction
Although the idea of using evolutionary computation to improve existing soft-
ware has been in the air for a little while [1], the use of genetic programming
(GP) [2,3] to improve manually written code starts to take off in 2009 (see Fig-
ure 2). First with Wes Weimer et al.’s prize winning automatic bug fixing work
[4,5,6,7,8,9] Section 3.1) and also Orlov and Sipper’s [10] use of GP to improve
manually written code by using it to seed the GP’s population [11] (Section 2.3).
The GISMO research project started four years ago with the lofty aim of trans-
forming the way we think about and produce software. Now nearing its end, we
can point to some successful applications (Sections 3.2 to 5.3) but perhaps the
major impact has been the growth of “Genetic Improvement” [12] and the in-
creasing acceptance that search based optimisation [13] can not only aid software
engineers but also act upon their software directly.

12

http://dx.doi.org/doi:10.1007/978-3-319-22183-0_2
http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://crest.cs.ucl.ac.uk/
http://www.cs.ucl.ac.uk/staff/W.Langdon/gismo/

 0

 20

 40

 60

 80

 100

 120

 140

 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

P
ap

er
s

Year

Fig. 2. Recent growth in number of entries in the genetic programming bibli-
ography applying GP to generate or improve software (May 2015)

We shall give an overview of Genetic Improvement (GI). This is based in
part on “Genetically Improved Software” [12] and work presented at the first
international event on GI (held in Madrid 12th July 2015 [14]). GI is the use of
optimisation techniques such as Genetic Algorithms and Genetic Programming
[2,3] to software itself. Although any optimisation technique might be used, so
far published work has concentrated upon using GP to improve human written
source code.

In the next section we start by briefly summarising research which evolved
complete software [15] and then move on to GI. Section 3 starts with automati-
cally fixing real bugs in real C/C++ programs (Section 3.1). This is followed by
reviews of the GISMO project’s work on gzip (Section 3.2), Bioinformatics (Sec-
tion 3.3) and parallel computing (Sections 3.4 to 3.6). Section 4 describes evolv-
ing a human competitive version of MiniSAT from multiple existing programs.
Whilst Section 5 describes three examples of GP and programmers working to-
gether including obtaining a 10 000 fold speedup. The last sections (Sections 6
and 7) conclude with the project’s main lessons.

2 Evolving useful Programs from Primordial Ooze

2.1 Hashes, Caches and Garbage Collection

Three early examples of real software being evolved using genetic programming
are: hashing, caching and garbage collection. Each has the advantages of being
small, potentially of high value and difficult to do either by hand or by theo-
retically universal principles. These include examples where GP generate code

13

exceeded the state-of-the art human written code. Whilst this is not to say a
human could not do better. Indeed they may take inspiration, or even code, from
the evolved solution. It is that to do so, requires a programmer skilled in the art,
for each new circumstance. Whereas, at least in principle, the GP can be re-run
for each new use case and so automatically generate an implementation specific
to that user.

Starting with Hussain and Malliaris [16] several teams have evolved good
hashing algorithms ([17], [18] and [19]).

Paterson showed GP can create problem specific caching code [20]. O’Neill
and Ryan [21] used their Grammatical Evolution approach also to create cache
code. Whilst Branke et al. [22] looked at a slightly different problem: deciding
which documents to retain to avoid fetching them again across the Internet.

Many computer languages provide a dynamic memory manager, which frees
the programmer of the tedium of deciding exactly which memory is in use and
provides some form of garbage collection whereby memory that is no longer in use
can be freed for re-use. Even with modern huge memories, memory management
can impose a significant overhead. Risco-Martin et al. [23] showed the GP can
generate an optimised garbage collector for the C language [24].

2.2 Mashups, Hyper-heuristics and Multiplicity Computing

The idea behind web services is that useful services should be easily constructed
from services across the Internet. Such hacked together systems are known as web
mashups. A classic example is a travel service which invokes web servers from a
number of airlines and hotel booking and car hire services, and is thus able to
provide a composite package without enormous coding effort in itself. Since web
services must operate within a defined framework ideally with rigid interfaces,
they would seem to be ideal building blocks with which genetic programming
might construct high level programs. Starting with Rodriguez-Mier, several au-
thors have reported progress with genetic programming evolving composite web
services [25,26,27].

There are many difficult optimisation problems which in practise are ef-
ficiently solved using heuristic search techniques, such as genetic algorithms.
However typically the GA needs to be tweaked to get the best for each prob-
lem. This has lead to the generation of hyper-heuristics [28], in which the GA
or other basic solver is tweaked automatically. Typically genetic programming
is used. Indeed some solvers have been evolved by GP combining a number of
basic techniques as well as tuning parameters or even re-coding GA components,
such as mutation operators [29].

A nice software engineering example of heuristics is compiler code generation.
Typically compilers are expected not only to create correct machine code but also
that it should be in some sense be “good”. Typically this means the code should
be fast or small. Mahajan and Ali [30] used GP to give better code generation
heuristics in Harvard’s MachineSUIF compiler.

Multiplicity computing [31] seeks to over turn the current software mono-
culture where one particular operating system, web browser, software company,

14

etc., achieves total dominance of the software market. Not only are such monopo-
lies dangerous from a commercial point of view but they have allowed widespread
problems of malicious software (especially computer viruses) to prosper. Exclud-
ing specialist areas, such as mutation testing [32,33], so far there has been only
a little work in the evolution of massive numbers of software variants [34]. Only
software automation (perhaps by using genetic programming) appears a credible
approach to N-version programming (with N much more than 3). N-version pro-
gramming has also been proposed as a way of improving predictive performance
by voting between three or more classifiers [35,36] or using other non-linear
combinations to yield a higher performing multi-classifier [37,38].

Other applications of GP include: creating optimisation benchmarks which
demonstrate the relative strengths and weaknesses of optimisers [39] and first
steps towards the use of GP on mobile telephones [40], connections to software
product lines [41], security [42,43] and adaptability [44].

2.3 Genetic Programming and Non-Function Requirements

Andrea Arcuri was in at the start of inspirational work on GP showing it can cre-
ate real code from scratch. Although the programs remain small, David White,
he and John Clark [45] also evolved programs to accomplish real tasks such as
creating pseudo random numbers for ultra tiny computers where they showed a
trade off between “randomness” and energy consumption.

The Virginia University group (see next section) also showed GP evolving
Pareto optimal trade offs between speed and fidelity for a graphics hardware
display program [46]. Evolution seems to be particularly suitable for exploring
such trade-offs [47,48] but (except for the work described later in this chapter)
there has been little research in this area.

Orlov and Sipper [10] describe a very nice system, Finch, for evolving Java
byte code. Effectively the GP population instead of starting randomly [49] is
seeded [11] with byte code created by compiling the initial program. The Finch
crossover operator acts on Java byte code to ensure the offspring program are
also valid java byte code.

Archanjo and Von Zuben [50] present a GP system for evolving small business
systems. They present an example of a database system for supporting a library
of books.

Ryan [51] and Katz and Peled [52] provide interesting alternative visions. In
genetic improvement the performance, particularly the quality of the mutated
program’s output, is assessed by running the program. Instead they suggest each
mutation be provably correct and thus the new program is functionally the same
as the original but in some way it is improved, e.g. by running in parallel. Katz
and Peled [52] suggests combining GP with model checking to ensure correctness.

Cody-Kenny et al. [53] showed on a dozen Java examples (mostly different
implementations of various types of sort from rosettacode.org) that GP was able
to reduce the number of Java byte code instructions executed.

Schulte et al. [54] describes a system which can further optimise the low level
Intel X86 code generated by optimising compilers. They show evolution can

15

reduce energy consumption of non-trivial programs. (Their largest application
contains 141 012 lines of code.) Mrazek et al. [55] showed it was possible to evolve
an important function (the median) in a variety of machine codes.

3 Improvement of Substantial Human Written code

3.1 Automatic Bug Fixing

As described in the previous two sections, recently genetic programming has
been applied to the production of programs itself, however so far relatively small
programs have been evolved. Nonetheless GP has had some great successes when
applied to existing programs. Perhaps the best known work is that on automatic
bug fixing [56]. Particularly the Humie award winning1 work of Westley Weimer
(Virginia University) and Stephanie Forrest (New Mexico) [5]. This has received
multiple awards and best paper prizes [4,6]. GP has been used repeatedly to
automatically fix most (but not all) real bugs in real programs [57]. Weimer
and Le Goues have now shown GP bug fixing to be effective on over a million
lines of C++ code. Once GP had been used to do the impossible others tried
[58,59,60] and it was improved [61] and also people felt brave enough to try other
techniques, e.g. [62,63,64]. Indeed their colleague, Eric Schulte, has shown GP
can operate below the source code level, e.g. [43]. In [8] he showed bugs can be
fixed via mutating the assembler code generated by the compiler or even machine
code [65]. After Weimer and co-workers showed that automatic bugfixing was not
impossible, people studied the problem more openly. It turns out, for certain real
bugs, with modern software engineering support tools, such as bug localisation
(e.g. [66]), the problem may not even be hard [67].

Formal theoretical analysis [68] of evolving sizable software is still thin on
the ground. Much of the work presented here is based on GP re-arranging lines
of human written code. In a study of 420 million lines of open source software
Gabel and Su [69] showed that excluding white space, comments and details
of variable names, any human written line of code has probably been written
before. In other words, given a sufficiently large feedstock of human written code,
current programs could have been written by re-using and re-ordering existing
source code. In many cases in this and the following sections, this is exactly what
GP is doing. Schulte et al. [9] provides a solid empirical study which refutes the
common assumption that software is fragile. (See also Figure 3). While a single
random change may totally break a program, mutation and crossover operations
can be devised which yield populations of offspring programs in which some may
be very bad but the population can also contains many reasonable programs and
even a few slightly improved ones. Over time the Darwinian processes of fitness
selection and inheritance [70] can amplify the good parts of the population,
yielding greatly improved programs.

1 Human-competitive results presented at the annual GECCO conference
http://www.genetic-programming.org/combined.php

16

http://www.genetic-programming.org/combined.php

-36
-30

-24
-18

-12
-6

 0
 6

-102
-104

-106
-108

0
102

104

106

108

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 Better
Worse

Slower

Faster

Change in Quality

Change in Instructions

Fig. 3. Histogram of impact on speed and solution quality made by single muta-
tions to Bowtie2 (Section 3.3). Many changes have no impact on quality, plotted
along x=0. Indeed a large number do not change its speed either (note spike at
the origin). There are a few mutations which give better quality solutions. It is
from these GP evolves a seventy fold speed up.

3.2 Auto Porting Functionality

The Unix compression utility gzip was written in C in the days of Digital Equip-
ment Corp.’s mini-computers. It is largely unchanged. However there is one
procedure (of about two pages of code) in it, which is so computationally in-
tensive that it has been re-written in assembler for the Intel 86X architecture
(i.e. Linux). The original C version is retained and is distributed as part of
Software-artifact Infrastructure Repository sir.unl.edu [72]. We showed genetic
programming could evolve a parallel implementation for an architecture not even
dreamt of when the original program was written [71].

Whereas Le Goues and others use the original program’s AST (abstract syn-
tax tree) to ensure that many of the mutated programs produced by GP compile,
we have used a BNF grammar (see Figure 1). For CUDA gzip we created our
grammar from generic code written by nVidia. The original function in gzip
was instrumented to record its inputs and its outputs each time it was called
(see Figure 4). Essentially GP was told to create parallel code from the BNF
grammar which when given a small number of example inputs (based on the
instrumented code, Figure 4) returned the same answers. The resulting parallel
code is functionally the same as the old gzip code.

3.3 Bowtie2GP Improving 50 000 lines of C++

Finding the best match between strings is the life blood of Bioinformatics.
Wikipedia lists more than 140 programs which do some form of Bioinformat-
ics string matching. Modern NextGen sequencing machines generate billions of
(albeit very noisy) DNA base-pair sequences.

17

http://sir.unl.edu

Instrumented gzip
(PC)

Evolved moduleModule to be replaced

Record data flows

graphics card
CUDA kernel on

Fig. 4. Auto porting a program module to new hardware. The original code is
instrumented to record the inputs (upper blue arrows) to the target function
(red) and the result (lower blue arrows) it calculates. These become the test
suite and fitness function when evolving the replacement code [71].

The authors of all this software are in a bind. For their code to be useful they
have to chose a tradeoff between speed, machine resources, quality of solution
and functionality, which will: 1) be important to Bioinformatics and 2) not be
immediately dominated by other programs. They have to choose a target point
when they start, as once basic design choices (e.g. target data sources and type
and size of computer) have been made, few research teams have the resources to
discard what they have written and start again. Potentially genetic programming
offers them a way of exploring this space of tradeoffs [47,48]. (Figure 5 shows
a two dimensional trade off between speed and quality.) GP can potentially
produce many programs across a Pareto optimal front and so might say “here
is a trade-off which you had not considered”. This could be very useful even if
the development team insist on coding a solution.

We have made a start by showing GP can transform human written DNA
sequence matching code, moving it from one tradeoff point to another. In our
example, the new program is specialised to a particular data source and sequence
problem for which it is on average more than 70 times faster. Indeed on this
particular problem, we were fortunate that not only is the variant faster but
indeed it gives a slight quality improvement on average [75].

3.4 BarraCUDA

BarraCUDA [76] like Bowtie2GP looks up DNA sequences. However BarraCUDA
uses the computational power of nVidia graphics accelerators (GPUs) to process
hundreds of thousands of short DNA sequences in parallel. Despite having been
written by experts both on Bioinformatics and on GPUs, GP when targeted by
a Human on a particular kernel was able to speed up that kernel by more than
100 times. Of course this kernel is only part of the whole program and overall
speed up is more modest. Nevertheless on real examples the GI code [77] can be

18

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.5 1 1.5 2 2.5

S
pe

ed
 u

p
on

 G
P

U

Error per pixel

Fig. 5. Example of automatically generated Pareto tradeoff front [48]. Genetic
programming used to improve 2D Stereo Camera code [73] for modern nVidia
GPU [74]. Left (above 0) many programs are faster than the original code written
by nVidia’s image processing expert (human) and give exactly the same answers.
Many other automatically generated programs are also faster but give different
answers. Some (cf. dotted blue line) are faster than the best zero error program.

up to three times faster than the previous (100% human) version Indeed with
a top end K80 Tesla BarraCUDA can now be more than ten times faster than
BWA on a 12 core CPU [78].

The GI version of BarraCUDA has has been in use via SourceForge since
20 March 2015. In the first two months it was downloaded 230 times.

3.5 Genetically Improved GPU based Stereo Vision

Originally the StereoCamera [73] system was specifically written by nVidia’s
image processing expert to show off their hardware. However in [74] we show
GP is able to improve the code for hardware which had not even been designed
when it was originally written. Indeed GP gave up to a seven fold speed up in
the graphics kernel.

3.6 Genetically Improved GPU based 3D Brain Imaging

GI can automatically tune an important CUDA kernel in the NiftyReg [79]
medical imaging package for six very different graphics cards (see [80, Fig. 1]).

19

http://sourceforge.net/projects/seqbarracuda/?source=typ_redirect

4 Plastic Surgery: Better MiniSAT from multiple Authors

Genetic Improvement has also been used to create an improved version of C++
code from multiple versions of a program written by different domain experts.
The Boolean satisfiability community has advanced rapidly since the turn of
the century. This is partly due to the “MiniSAT hack track”, which encourages
people to make small changes to the MiniSAT code. Some of these variants were
evolved together to give a new MiniSAT tailored to solve interaction testing
problems [81]. It received a human competitive award (HUMIE) in 2014.

5 Creating and Incorporating New Functionality

5.1 Babel Pidgin: Adding Double Language Translation Feature

Jia et al. [82] describes another prize winning GI system. GP including human
hints was able to evolved new functionality externally and then search based
techniques [83] were used to graft the new code into an existing program (pidgin)
of more than 200 000 lines of C++.

5.2 Grow and Serve GP Citations

The GP grew code and grafted it into a Django web server to provide a citation
service based in Google Scholar. As an experiment, the GP bibliography used
this GP produced service. In the first 24 hours it was used 369 times from 29
countries [84].

5.3 104× Speedup on Folding RNA Molecules

GP was told approximately where to evolve new code within an existing parallel
program pknots [85]. It converted the original CUDA kernel, which processes
one Dynamic Programming matrix at a time, into one which processes multiple
matrices. Although only trained on five matrices, the evolved kernel can work
on up to 200 000 matrices, delivering speed ups of up ten thousand fold [86].

6 GISMO Key Findings

The idea of using existing code as its own specification is very valuable (see
also Figure 4). Many existing specifications are informal and often incomplete.
Whilst the existing code may contain errors, the fact that it is in use shows it
to be near what is wanted and so can be used as a basis for new work. Also by
using existing test suites or automatic test case generation tools, the output of
the existing code under test can be used as its own test oracle and indeed the
test oracle for the new code. The number of tests available for validating the
new code is now only limited by machine (rather than human) resource limits.
However many of the GISMO examples given above show a very small number

20

of tests, perhaps just a handful (provided they are frequently changed), may be
sufficient to guide the GI. With a much larger pool of tests or other validation
techniques being available post evolution. Indeed when working at the source
code level, GI generated software can potentially be validated by any of today’s
techniques, including manual inspection as well as intensive regression testing.

While human written code may be optimised for a particular objective, GI
can optimise it for multiple objectives (Figure 5). This may be particularly im-
portant if, whilst maintaining functionality of the existing code, GI can suggest
unsuspected tradeoffs between speed, memory usage, energy consumption, net-
work loading, etc. and quality.

Although code evolved from scratch tends to be small, grow and graft (GGGP)
(Section 5) is a potential way around the problem. GGGP still evolves small new
components but also uses GP to graft them into much bigger human written
codes, thus creating large hybrid software.

The work on miniSAT (Section 4) shows GP can potentially scavenge not
just code from the program it is improving but code from multiple programs by
multiple authors. This GP plastic surgery [87] created in a few hours an award
winning version of miniSAT tailored to solving an important software engineering
problem. The automatically customised code was better at problems of this type
than generic versions of miniSAT which has been optimised by leading SAT
experts for years.

In software engineering there has always been a strong pressure to keep soft-
ware as uniform as possible. To try and keep all the users running just a few
versions. With the popularity of software product lines and possibility of multi-
plicity computing, we see an opposing trend. A desire to reduce the impact of
malicious programmers by avoiding the current software monoculture and for
more bespoke and adaptable systems. Already there is a little GI work in both
avenues.

7 GISMO Impact

While the GI version of BarraCUDA has been in use since March 2015, perhaps
the biggest impact of the project has been to show automatic or even human
assisted evolution of software can be feasible. Before 2009 automatic bug fixing
was regarded as fantasy but following [4] this changed. The biggest impact of
the project will be encouraging people to do what was previously considered
impossible.

Sources and Datasets

The grammar based genetic programming systems and associated benchmarks
are available via the GISMO project web pages. Other authors have also made
their systems available (e.g. Le Goues’ genprog) or may be asked directly.

21

http://sourceforge.net/projects/seqbarracuda/?source=typ_redirect
http://www.cs.ucl.ac.uk/staff/W.Langdon/gismo/#code
http://genprog.cs.virginia.edu/

Acknowledgements

I am grateful for the assistance of Andrea Arcuri, Robert Feldt, Marc Schoenauer,
Wes Weimer and Darrell Whitley.

Tesla donated by nVidia.

References

1. Ryan, C., Ivan, L.: Automatic parallelization of arbitrary programs. In Poli, R.,
et al., eds.: EuroGP’99. LNCS 1598, Goteborg, Sweden, Springer-Verlag 244–254

2. Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural
Selection. MIT press (1992)

3. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic
programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk (2008) (With contributions by J. R. Koza).

4. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In Fickas, S., ed. ICSE 2009, Vancouver 364–374

5. Forrest, S., Nguyen, T., Weimer, W., Le Goues, C.: A genetic programming ap-
proach to automated software repair. In Raidl, G., et al., eds.: GECCO ’09, Mon-
treal, ACM 947–954 Best paper.

6. Weimer, W., Forrest, S., Le Goues, C., Nguyen, T.: Automatic program repair with
evolutionary computation. Communications of the ACM 53(5) (2010) 109–116

7. Fast, E., Le Goues, C., Forrest, S., Weimer, W.: Designing better fitness functions
for automated program repair. In Branke, J., et al., eds.: GECCO ’10, ACM
965–972

8. Schulte, E., Forrest, S., Weimer, W.: Automated program repair through the
evolution of assembly code. In: ASE 2010, Antwerp, ACM 313–316

9. Schulte, E., Fry, Z.P., Fast, E., Weimer, W., Forrest, S.: Software mutational
robustness. Genetic Programming and Evolvable Machines 15(3) (2014) 281–312

10. Orlov, M., Sipper, M.: Flight of the FINCH through the Java wilderness. IEEE
Trans. on EC 15(2) (2011) 166–182

11. Langdon, W.B., Nordin, J.P.: Seeding GP populations. In Poli, R., et al., eds.:
EuroGP’2000. LNCS 1802., Edinburgh, Springer-Verlag 304–315

12. Langdon, W.B.: Genetically improved software. In Gandomi, A.H., et al., eds.:
Handbook of Genetic Programming Applications. (Springer) Forthcoming.

13. Harman, M., Jones, B.F.: Search based software engineering. Information and
Software Technology 43(14) (2001) 833–839

14. Langdon, W.B., Petke, J., White, D.R.: Genetic improvement 2015 chairs’ wel-
come. In GECCO’15 Companion, Madrid, ACM

15. Arcuri, A., Yao, X.: Co-evolutionary automatic programming for software devel-
opment. Information Sciences 259 (2014) 412–432

16. Hussain, D., Malliaris, S.: Evolutionary techniques applied to hashing: An efficient
data retrieval method. In Whitley, D., et al., eds.: GECCO-2000, Las Vegas,
Nevada, USA, Morgan Kaufmann 760

17. Berarducci, P., Jordan, D., Martin, D., Seitzer, J.: GEVOSH: Using grammatical
evolution to generate hashing functions. In Poli, R., et al., eds.: GECCO 2004
Workshop Proceedings, Seattle, Washington, USA

18. Estebanez, C., Saez, Y., Recio, G., Isasi, P.: Automatic design of noncryptographic
hash functions using genetic programming. Computational Intelligence. Forthcom-
ing.

22

http://www.nvidia.com
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ryan_1999_apap.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2009_ICES.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_conf_gecco_ForrestNWG09.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2010_ACM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Fast_2010_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte10__autom_progr_repair_evolut_assem_code.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2014_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Orlov_2011_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2000_seed.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_hbgpa.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Arcuri2010.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Hussain_2000_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/berarducci_2004_ugw_pber.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Estebanez_2014_CI.html

19. Karasek, J., Burget, R., Morsky, O.: Towards an automatic design of non-
cryptographic hash function. In: TSP 2011, Budapest 19–23

20. Paterson, N., Livesey, M.: Evolving caching algorithms in C by genetic program-
ming. In Koza, J.R., et al., eds.: Genetic Programming 1997, Stanford University,
CA, USA, Morgan Kaufmann 262–267

21. O’Neill, M., Ryan, C.: Automatic generation of caching algorithms. In Miettinen,
K., et al., eds.: Evolutionary Algorithms in Engineering and Computer Science,
Jyväskylä, Finland, John Wiley & Sons (1999) 127–134

22. Branke, J., Funes, P., Thiele, F.: Evolutionary design of en-route caching strategies.
Applied Soft Computing 7(3) (2006) 890–898

23. Risco-Martin, J.L., Atienza, D., Colmenar, J.M., Garnica, O.: A parallel evolu-
tionary algorithm to optimize dynamic memory managers in embedded systems.
Parallel Computing 36(10-11) (2010) 572–590

24. Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisa-
tion. In: GECCO ’15, Madrid, ACM

25. Rodriguez-Mier, P., Mucientes, M., Lama, M., Couto, M.I.: Composition of web
services through genetic programming. Evolutionary Intelligence 3(3-4) (2010)
171–186

26. Fredericks, E.M., Cheng, B.H.C.: Exploring automated software composition with
genetic programming. In Blum, C., et al., eds.: GECCO ’13 Companion, Amster-
dam, The Netherlands, ACM 1733–1734

27. Xiao, Liyuan, Chang, Carl K., Yang, Hen-I, Lu, Kai-Shin, Jiang, Hsin-yi: Au-
tomated web service composition using genetic programming. In: COMPSACW
2012, Izmir 7–12

28. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.:
Hyper-heuristics: a survey of the state of the art. JORS 64(12) (2013) 1695–1724

29. Pappa, G.L., Ochoa, G., Hyde, M.R., Freitas, A.A., Woodward, J., Swan, J.: Con-
trasting meta-learning and hyper-heuristic research: the role of evolutionary algo-
rithms. Genetic Programming and Evolvable Machines 15(1) (2014) 3–35

30. Mahajan, A., Ali, M.S.: Superblock scheduling using genetic programming for
embedded systems. In: ICCI 2008. IEEE 261–266

31. Cadar, C., Pietzuch, P., Wolf, A.L.: Multiplicity computing: a vision of software
engineering for next-generation computing platform applications. In Sullivan, K.,
ed.: FoSER ’10 FSE/SDP workshop, Santa Fe, New Mexico, USA, ACM 81–86

32. DeMillo, R.A., Offutt, A.J.: Constraint-based automatic test data generation.
IEEE Trans. Software Engineering 17(9) (1991) 900–910

33. Langdon, W.B., Harman, M., Jia, Y.: Efficient multi-objective higher order muta-
tion testing with genetic programming. JSS 83(12) (2010) 2416–2430

34. Feldt, R.: Generating diverse software versions with genetic programming: an
experimental study. IEE Proceedings 145(6) (1998) 228–236

35. Imamura, K., Foster, J.A.: Fault-tolerant computing with N-version genetic pro-
gramming. In Spector, L., et al., eds.: GECCO-2001, San Francisco, California,
USA, Morgan Kaufmann 178

36. Imamura, K., Soule, T., Heckendorn, R.B., Foster, J.A.: Behavioral diversity and
a probabilistically optimal GP ensemble. Genetic Programming and Evolvable
Machines 4(3) (2003) 235–253

37. Langdon, W.B., Buxton, B.F.: Genetic programming for combining classifiers. In
Spector, L., et al., eds.: GECCO-2001, San Francisco, California, USA, Morgan
Kaufmann 66–73

38. Buxton, B.F., Langdon, W.B., Barrett, S.J.: Data fusion by intelligent classifier
combination. Measurement and Control 34(8) (2001) 229–234

23

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Karasek_2011_TSP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Paterson_1997_ecacGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/oneill_1999_AGCA.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Branke_2006_ASC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/RiscoMartin2010572.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Wu_2015_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Rodriguez-Mier_2010_EI.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Fredericks_2013_GECCOcomp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Xiao_2012_COMPSACW.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Burke2013.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Pappa_2013_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Mahajan_2008_ieeeICCI.html
http://dx.doi.org/10.1145/1882362.1882380
http://dx.doi.org/10.1109/32.92910
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_jss.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/feldt_1998_gdsvGPes.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/imamura_2001_gecco.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/imamura_2003_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2001_gROC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/buxton_2001_MC.html

39. Langdon, W.B., Poli, R.: Evolving problems to learn about particle swarm and
other optimisers. In Corne, D., et al., eds.: CEC-2005, Edinburgh, UK, IEEE Press
81–88

40. Cotillon, A., Valencia, P., Jurdak, R.: Android genetic programming framework.
In Moraglio, A., et al., eds.: EuroGP 2012. LNCS 7244., Malaga, Spain, Springer
Verlag 13–24

41. Lopez-Herrejon, R.E., Linsbauer, L.: Genetic improvement for software product
lines: An overview and a roadmap. In GECCO’15 Companion, Madrid, ACM

42. Landsborough, J., Harding, S., Fugate, S.: Removing the kitchen sink from soft-
ware. In GECCO’15 Companion, Madrid, ACM

43. Schulte, E., Weimer, W., Forrest, S.: Repairing COTS router firmware without
access to source code or test suites: A case study in evolutionary software repair.
In GECCO’15 Companion, Madrid, ACM

44. Yeboah-Antwi, K., Baudry, B.: Embedding adaptivity in software systems using
the ECSELR framework. In GECCO’15 Companion, Madrid, ACM

45. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs.
IEEE Trans. EC 15(4) (2011) 515–538

46. Sitthi-amorn, P., Modly, N., Weimer, W., Lawrence, J.: Genetic programming for
shader simplification. ACM Trans. Graphics 30(6) (2011) article:152

47. Feldt, R.: Genetic programming as an explorative tool in early software develop-
ment phases. In Ryan, C., Buckley, J., eds.: Proceedings of the 1st International
Workshop on Soft Computing Applied to Software Engineering, University of Lim-
erick, Ireland, Limerick University Press (1999) 11–20

48. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.A.: The
GISMOE challenge: Constructing the Pareto program surface using genetic pro-
gramming to find better programs. In: ASE 12, Essen, Germany, ACM 1–14

49. Lukschandl, E., Holmlund, M., Moden, E.: Automatic evolution of Java bytecode:
First experience with the Java virtual machine. In Poli, R., et al., eds.: Late
Breaking Papers at EuroGP’98, Paris, France, CSRP-98-10, The University of
Birmingham, UK (1998) 14–16

50. Archanjo, G.A., Von Zuben, F.J.: Genetic programming for automating the devel-
opment of data management algorithms in information technology systems. Ad-
vances in Software Engineering (2012)

51. Ryan, C.: Automatic re-engineering of software using genetic programming. Kluwer
Academic Publishers (1999)

52. Katz, G., Peled, D.: Synthesizing, correcting and improving code, using model
checking-based genetic programming. In Bertacco, V., Legay, A., eds.: HVC 2013.
LNCS 8244, Haifa, Israel, Springer 246–261 Keynote Presentation.

53. Cody-Kenny, B., Lopez, E.G., Barrett, S.: locoGP: improving performance by
genetic programming java source code. In GECCO’15 Companion, Madrid, ACM

54. Schulte, E., Dorn, J., Harding, S., Forrest, S., Weimer, W.: Post-compiler software
optimization for reducing energy. In: ASPLOS’14, Salt Lake City, Utah, USA,
ACM) 639–652

55. Mrazek, V., Vasicek, Z., Sekanina, L.: Evolutionary approximation of software for
embedded systems: Median function. In GECCO’15 Companion, Madrid, ACM

56. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug
fixing. In Wang, J., ed.: in WCCI 2008, IEEE 162–168

57. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each. In Glinz, M.,
ed.: ICSE 2012, Zurich 3–13

24

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2005_CECb.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/cotillon_2012_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Lopez-Herrejon_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Landsborough_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Yeboah-Antwi_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White_2011_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/feldt_1999_GPxtxsdp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2012_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/lukschandl_1998_1java.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Archanjo_2012_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ryan_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/conf_hvc_KatzP13.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Cody-Kenny_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte2014optimization.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Mrazek_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Arcuri_2008_cec.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/LeGoues_2012_ICSE.html

58. Wilkerson, J.L., Tauritz, D.: Coevolutionary automated software correction. In
Branke, J., et al., eds.: GECCO ’10, Portland, Oregon, USA, ACM 1391–1392

59. Bradbury, J.S., Jalbert, K.: Automatic repair of concurrency bugs. In Di Penta,
M., et al., eds.: SSBSE ’10, Benevento, Italy. Fast abstract.

60. Ackling, T., Alexander, B., Grunert, I.: Evolving patches for software repair. In
Krasnogor, N., et al., eds.: GECCO ’11, Dublin, Ireland, ACM 1427–1434

61. Kessentini, M., Kessentini, W., Sahraoui, H., Boukadoum, M., Ouni, A.: Design
defects detection and correction by example. In: ICPC 2011, Kingston, Canada,
IEEE 81–90

62. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: SemFix: program repair
via semantic analysis. In Cheng, B.H.C., Pohl, K., eds.: ICSE 2013, San Francisco,
USA, IEEE 772–781

63. Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from
human-written patches. In: ICSE 2013, San Francisco, USA 802–811

64. Tan, S.H., Roychoudhury, A.: relifix: Automated repair of software regressions. In
Canfora, G., et al., eds.: ICSE 2015, Florence Italy, IEEE 471–482

65. Schulte, E., DiLorenzo, J., Weimer, W., Forrest, S.: Automated repair of binary
and assembly programs for cooperating embedded devices. In: ASPLOS 2013,
Houston, Texas, USA, ACM 317–328

66. Yoo, S.: Evolving human competitive spectra-based fault localisation techniques.
In Fraser, G., et al., eds.: SSBSE 2012. LNCS 7515, Riva del Garda, Italy, Springer
244–258

67. Weimer, W.: Advances in automated program repair and a call to arms. In Ruhe,
G., Zhang, Y., eds.: SSBSE 2013. LNCS 8084, Leningrad, Springer 1–3 Invited
keynote.

68. Cody-Kenny, B., Barrett, S.: The emergence of useful bias in self-focusing genetic
programming for software optimisation. In Ruhe, G., Zhang, Y., eds.: SSBSE 2013.
LNCS 8084, Leningrad, Springer (2013) 306–311. Graduate Student Track.

69. Gabel, M., Su, Z.: A study of the uniqueness of source code. In: FSE ’10, ACM
147–156

70. Darwin, C.: The Origin of Species. Penguin classics, 1985 edn. John Murray (1859)

71. Langdon, W.B., Harman, M.: Evolving a CUDA kernel from an nVidia template.
In Sobrevilla, P., ed.: WCCI 2010, Barcelona, IEEE 2376–2383

72. Hutchins, M., Foster, H., Goradia, T., Ostrand, T.: Experiments on the effec-
tiveness of dataflow- and control-flow-based test adequacy criteria. In: ICSE 1994
191–200

73. Stam, J.: Stereo imaging with CUDA. Technical report, nVidia (2008)

74. Langdon, W.B., Harman, M.: Genetically improved CUDA C++ software. In
Nicolau, M., et al., eds.: EuroGP 2014. LNCS 8599, Granada, Spain, Springer
87–99

75. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. IEEE Trans. EC 19(1) (2015) 118–135

76. Klus, P., Lam, S., Lyberg, D., Cheung, M.S., Pullan, G., McFarlane, I., Yeo, G.S.H.,
Lam, B.Y.H.: BarraCUDA - a fast short read sequence aligner using graphics
processing units. BMC Research Notes 5(27) (2012)

77. Langdon, W.B., Lam, B.Y.H., Petke, J., Harman, M.: Improving CUDA DNA
analysis software with genetic programming. In: GECCO ’15, Madrid, ACM

78. Langdon, W.B., Lam, B.Y.H.: Genetically improved barraCUDA. Research Note
RN/15/03, Department of Computer Science, University College London (2015)

25

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Wilkerson_2010_gecco.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/BradburyJ10.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Ackling_2011_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kessentini_2011_ICPC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Nguyen_2013_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kim_2013_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2013_ARB_2451116_2451151.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Yoo_2012_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2013_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Cody-Kenny_2013_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Gabel_2010_FSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html
http://dx.doi.org/10.1109/ICSE.1994.296778
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://dx.doi.org/10.1186/1756-0500-5-27
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2015_GECCO.html
http://arxiv.org/abs/arXiv:1505.07855

79. Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J.,
Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units.
Computer Methods and Programs in Biomedicine 98(3) (2010) 278–284

80. Langdon, W.B., Modat, M., Petke, J., Harman, M.: Improving 3D medical image
registration CUDA software with genetic programming. In Igel, C., et al., eds.:
GECCO ’14, Vancouver, BC, Canada, ACM 951–958

81. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement
and code transplants to specialise a C++ program to a problem class. In Nicolau,
M., et al., eds.: EuroGP 2014. LNCS 8599, Granada, Spain, Springer 137–149

82. Harman, M., Jia, Y., Langdon, W.B.: Babel pidgin: SBSE can grow and graft
entirely new functionality into a real world system. In Le Goues, C., Yoo, S., eds.:
SSBSE 2014. LNCS 8636, Fortaleza, Brazil, Springer 247–252. Winner Challange
Track.

83. Harman, M.: Software engineering meets evolutionary computation. Computer
44(10) (2011) 31–39 Cover feature.

84. Jia, Y., Harman, M., Langdon, W.B., Marginean, A.: Grow and serve: Growing
Django citation services using SBSE. In Yoo, S., Minku, L., eds.: SSBSE 2015
Challenge Track, Bergamo, Italy

85. Reeder, J., Steffen, P., Giegerich, R.: pknotsRG: RNA pseudoknot folding including
near-optimal structures and sliding windows. Nucleic Acids Research 35(suppl 2)
(2007) W320–W324

86. Langdon, W.B., Harman, M.: Grow and graft a better CUDA pknotsRG for RNA
pseudoknot free energy calculation. In GECCO’15 Companion, Madrid, ACM.

87. Barr, E.T., Brun, Y., Devanbu, P., Harman, M., Sarro, F.: The plastic surgery
hypothesis. In Orso, A., et al., eds.: FSE 2014, Hong Kong, ACM

26

http://dx.doi.org/10.1016/j.cmpb.2009.09.002
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2014_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2014_Babel.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2011_ieeeC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/jia_2015_gsgp.html
http://dx.doi.org/10.1093/nar/gkm258
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi_pknots.html
http://earlbarr.com/publications/psh.pdf

	Genetic Improvement of Softwarefor Multiple Objectives

