
SSBSE-2016 (Challenge track) Federica Sarro and Kalyanmoy Deb Eds., LNCS 9962,
Raleigh, North Carolina, USA, 8-10 Oct. Springer. Preprint

API-Constrained Genetic Improvement

William B. Langdon, David R. White, Mark Harman, Yue Jia, Justyna Petke

University College London, CREST, UK

Abstract. ACGI respects the Application Programming Interface whilst
using genetic programming to optimise the implementation of the API.
It reduces the scope for improvement but it may smooth the path to
GI acceptance because the programmer’s code remains unaffected; only
library code is modified. We applied ACGI to C++ software for the state-
of-the-art OpenCV SEEDS superPixels image segmentation algorithm,
obtaining a speed-up of up to 13.2% (±1.3%) to the $50K Challenge
winner announced at CVPR 2015.

1 Introduction and Background

Genetic improvement uses computational search to find improved versions of
existing software systems [8,6,11,19]. It usually does this by searching for a set
of edits that are performed on the software system to be improved, such that
the desired functional behaviour of the original is retained, while some func-
tional [10,5] and/or non-functional [15,11] aspects are improved. There has been
a recent upsurge of activity in this area, with results demonstrating that genetic
improvement is able to improve many different properties of systems, includ-
ing dynamic memory use [20], speed of execution [9,17] and energy consump-
tion [1,14], as well as augmenting and fixing broken functionality [10,5].

One of the advantages of genetic improvement is that it uses unconstrained
modifications to software systems, more akin to genetic programming [13], than
traditional program transformation. As a result, the programmers’ original ver-
sion of the system, although improved, is also syntactically (and possibly se-
mantically [9,15]) altered, making it less familiar to the programmer than the
original. This lack of familiarity may pose a barrier to acceptance of genetically
improved programs, and adoption of genetic improvement as a technique; devel-
opers may be concerned about ongoing maintenance and comprehension of the
genetically improved program.

Ultimately, these concerns may be overcome by the advantages offered by
genetic improvement: that which we currently regard as source code may, in
future, become ‘the new object code’, to be manipulated freely by genetic im-
provement [6]. However, even if this vision were to be realised, there will remain
a necessary transition period, during which we will need to support a ‘mixed
economy of software systems’. Systems, part produced by machine and part pro-
duced by humans, will have to co-exist, symbiotically and seamlessly. This raises
the fundamental question for genetic improvement of determining the best sepa-
ration of concerns between human and machine: how they might collaboratively
arrive at improved software systems that are acceptable to human developers?

1



2

We propose API-Constrained Genetic Improvement (ACGI), as a first at-
tempt to identify such a suitable separation of concerns. The key insight un-
derlying ACGI is that human programmers are already generally prepared to
accept third-party software in the form of library code, accessed through API
calls. Typical criteria for library code acceptance revolve around the performance
of the library functions, and demonstration of acceptable behaviour with respect
to a suite of test cases; exactly the criteria that are automatically and inherently
assessed during the genetic improvement process. Using ACGI, we constrain ge-
netic improvement to manipulate only the library’s source code, leaving the API
and application code unmodified.

Although library functions are inherently designed to be general solutions,
the underlying implementation does not have to be the same for all client appli-
cations. Instead we suggest libraries offer opportunities for specialisation. With
potentially multiple implementations, each tailored to the expected usage of the
library by one or more applications. AGCI, we hope, can tailor library functions
to each particular client application, providing evidence for improved perfor-
mance and adequate testing.

In the next two sections we apply GI to just the C++ source code which
implements the SEEDS picture segmentation [18]. This implementation won the
State of the Art Vision Challenge (http://code.opencv.org/projects/opencv/
wiki/VisionChallenge) last year at the 28th IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2015) and was subsequently incorpo-
rated into the Open Source Computer Vision (OpenCV) library. Just acting on
this source, using real run time on a real computer for fitness, GI was able to
find an almost identical class which was on average more than 13% faster on the
images used in the State of the Art Challenge. (These images are 700 by 1000
full colour. None of them were used in training by our GI.)

2 Applying ACGI to OpenCV Image Segmentation
We used the new ACGI framework on the OpenCV C++ source code of SEEDS
Superpixels. To identify the library methods used, we first profiled a simple
client application of the SuperPixels library using valgrind. This highlighted the
updatePixels() method of the SuperpixelSEEDSImpl class. Then we used ACGI
(see Table 1) to apply mutations to just updatePixels() and fellow methods
called by it. (I.e. update(), addPixel(), deletePixel(), probability(), threebyfour()
fourbythree() and updateLabels(). In total 319 lines of code.)

3 Results
3.1 Best of First Generation

In the first generation (left Figure 1) all but five mutants compiled. (These five
failed to compile due to a bug in the new swap mutation’s use of scoping rules).
Eight failed run time array bound checks. Four were aborted by the CPU limit
of 5 seconds (all due to deleting the iteration increment part of for loops). 65
ran and terminated ok but at least one pixel (of 7 990 272) was different from
the value calculated by the original code. Leaving 18 cases where the code was

http://code.opencv.org/projects/opencv/wiki/VisionChallenge#Winners-by-Categories-all-are-winners-this-isnt-in-order-of-priority
http://code.opencv.org/projects/opencv/wiki/VisionChallenge#Winners-by-Categories-all-are-winners-this-isnt-in-order-of-priority
http://code.opencv.org/projects/opencv/wiki/VisionChallenge
http://opencv.org/


3

Table 1: Evolve faster than state-of-the-art superPixel OpenCV segmentation

Representation: list replacements, deletions, insertions and swaps (via BNF grammar)
Fitness: Compile (gcc 4.8.5) modified code. Compare its segmentation of

2448 by 3264 colour training image with segmentation given by
original code. If identical, fitness is nanoseconds to run Superpixel-
SEEDS::iterate(pic,4) else mutant is killed. To reduce noise, run on
local disk on otherwise idle networked Linux PC. For robustness to
noise, fitness is 25th percentile (i.e. 3rd) of 11 sequential measurements.

Population: Panmictic, non-elitist, generational. 100 members.
Parameters: Initial population of random single mutants. 50% truncation selection.

50% two point crossover and 50% mutation. (Mutations chosen equally
between insert, delete, replace and swap.) No size limit. Stop after
200 generations.

 175

 180

 185

 190

 195

 200

 205

 210

 0  50  100  150  200

R
u

n
 t

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Generations (population 100)

Successfull mutant (mean and sd of 11 runs each)
Original code (mean and sd per generation)

Fig. 1: Evolution of speed, on a 3.60GHz Intel i7-4790 32GB Centos7 desktop.

modified but gave exactly the same answer. It appears that the fastest of these
improves the code by taking advantage of the fact that it is being run with its de-
fault settings. <IF updatePixels.cpp 267><IF updatePixels.cpp 38> replaces
the condition of an if statement (if( prior2 != 0 ) on line 267) with the if

condition on line 38. As the compiler is now able to infer the condition will
always be true, it can eliminate the if entirely. Whereas in the original code,
although prior2 is never zero, it is impossible for the compiler to know this.



4

3.2 Cleaning up the Best of Run Mutation

The best individual in generation 200 (right Figure 1) gives exactly the same
answer on all 2448 × 3264 = 7 990 272 pixels as the prize winning code and yet
runs on average 9.7% faster.

The evolved program contains 22 changes. To determine which are essential,
each was removed one at a time to create an intermediate of 21 changes whose
performance on the same training image was measured as before. In six cases
this made the mutant significantly more than 0.1% worse. A new mutant was
constructed from these six (in the same order as the best evolved program).
(Notice we measured real runtime and so despite precautions some changes may
still be included due to noise.) On the original training image it was 10.0% faster
than the original code and produced exactly the same answer. It was run on 447
new images. In 424 cases the new code produced identical answers. In all but five
of the remaining 23 images less than nine (median 3) pixels were changed. The
biggest difference was 71 out of 7 990 272 pixels. Overall < 0.000 000 1 of valida-
tion pixels are different. On average across the 447 new images the new code is
10.3% (±1.4%) faster. On the six “bikes” images from the 2014 OpenCV chal-
lenge competition (which were not used for training), it always produces identical
answers and is 13.2% (±1.3%) faster. Taking the mutant and recompiling (gcc
4.8.4) for a virtualized Ubuntu 14.04.1 cloud server we get the same speed up,
i.e. 13.1% (±4.1%), however these savings did not carry over to a 1.6GHz Apple
MacBook Air laptop with a LLVM compiler. (Some semantics-preserving changes
are available via https://github.com/Itseez/opencv contrib/pull/687/.)

3.3 The Six Improvements in the Best of Last Generation

The six line changes are described and partially explained next. They are grouped
by which method of the SuperpixelSEEDSImpl class they were made to.

updatePixels() Lines 113 and 114 are swapped (by swap mutation). No se-
mantic changes are expected. However, it will change the order in which data
are read. (Notice the image exceeds our desktop PC’s cache of 8 megabytes.)

A copy of line 59 is added to end of the first nested for loop which scans
the whole image. Line 59 is in the nested for loop. It is a call to update(). It
is difficult to see why this change is beneficial and perhaps it may change the
program’s output.

probability() Lines 279 and 281 are deleted. These are case: statements
corresponding to values of seeds prior which are never used in these examples.
Reducing the number of cases in switch( seeds prior ) may make it faster
for the cases that are used and in this code removing the unused options has no
impact on the remaining cases.

fourbythree() Lines 338 and 345 are swapped. This has no impact on the
output, but does change the order in which array elements are read.

A copy of line 199 (from updatePixels()) is inserted into fourbythree().
The line inverts global Boolean variable forwardbackward. However, fourby

https://github.com/Itseez/opencv_contrib/pull/687/


5

three() is always called twice, so the second call immediately inverts forward

backward a second time, restoring the original behaviour. However, it is difficult
to see why this mutation would make the program go faster.

4 Related and Future Work

Concerns about the maintainability of genetically improved code have partly
been addressed by work on automatically generating documentation for the im-
provements [3]. Human-written documentation may suffer from all sorts of in-
consistencies and omissions, whereas machine-generated documentation could,
in principle, be more systematic and thorough.

Nevertheless, our experience of genetic improvement [20,9,1], is that we are
at once delighted by the surprise of seeing the unexpected improvements that can
be found, yet at the same time challenged to understand, interpret and explain
them. It is one of the advantages of computational search that it can confound
and surpass human expectations. Indeed, this ‘surprisal’ is the underpinning of
most human competitive results, some of which have already been reported for
SBSE in general [16], and for genetic improvement in particular [12].

The ability to find unexpected solutions is both a strength and a weakness of
genetic improvement: It is a strength because it finds improved software that no
human would be likely to find, but it can become a weakness if it finds solutions
that few humans can understand. Our approach to genetic improvement, ACGI,
isolates and contains the modified code, in much the way that a surgeon might
seek to isolate a wound [2]. While the modified parts of the code are the source
of improvement, to the programmer they might more closely resemble a ‘wound’.

In focusing on library functions, our work is similar to the work on deep
parameter optimisation [20], which exposes additional parameters to facilitate
better tuning at the application layer. However, inserting additional parameters
inherently disrupts the API layer. By contrast, the goal of ACGI is to mini-
mally disrupt the API layer, so that details of the modifications that lead to
improvements become relatively unimportant to the software engineer. In this
way, our approach partly resembles the goal of ‘obliviousness’ in aspect oriented
programming [7]; client code performance is improved, yet it remains oblivious
to the changes made in the library functions, since the same API is maintained.

In future work, we will seek to investigate human programmer tolerance to
genetically improved code, addressing the fundamental question “how much dis-
ruption is a software engineer prepared to tolerate for a given level of performance
improvement for a given software engineering domain/application?”.

5 Conclusions

We have introduced API-Constrained Genetic Improvement (ACGI) with the
aim of bridging the gap between machine and human, to allay concerns about
genetic improvement maintainability. Our initial experiments indicate that, de-
spite ACGI’s tight constraints, improvements can still be found automatically,



6

in real-world software systems. E.g. compared to the winner of last year’s image
segmentation task in the OpenCV State of the Art Vision Challenge we find a
speed up of 13% (with little change in functionality).

Acknowledgement: We would like to thank Bobby R. Bruce. This work is part
supported by the GGGP and DAASE [4] projects.

References
1. Bruce, B., Petke, J., Harman, M.: Reducing energy consumption using genetic

improvement. In: GECCO, pp. 1327–1334 (2015)
2. Cruse, P., Foord, R.: A five-year prospective study of 23,649 surgical wounds.

Archives of Surgery, 107(2) pp. 206–210 (1973)
3. Fry, Z.P., Landau, B., Weimer, W.: A human study of patch maintainability. In:

ISSTA, pp. 177–187 (2012)
4. Harman, M., Burke, E., Clark, J.A., Yao, Xin: Dynamic adaptive search based

software engineering (keynote paper). In: ESEM. pp. 1–8 (2012)
5. Harman, M., Langdon, W.B., Jia, Yue: Babel Pidgin: SBSE can grow and graft

entirely new functionality into a real world system. In: SSBSE, pp. 247–252 (2014)
6. Harman, M., Langdon, W.B., Jia, Yue, White, D.R., Arcuri, A., Clark, J.A.: The

GISMOE challenge: Constructing the Pareto program surface using genetic pro-
gramming to find better programs (keynote paper). In: ASE, pp. 1–14 (2012)

7. Kiczales, G.: Aspect oriented programming. ACM SIGPLAN Notices 32(10), 162–
162 (Oct 1997), table of contents includes this invited talk.

8. Langdon, W.B.: Genetically improved software. In: Gandomi, A.H., et al. (eds.)
Handbook of Genetic Programming Applications, pp. 181–220. Springer (2015)

9. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. IEEE TEVC 19(1), 118–135 (2015)

10. Le Goues, C., Forrest, S., Weimer, W.: Current challenges in automatic software
repair. Software Quality Journal 21(3), 421–443 (2013)

11. Orlov, M., Sipper, M.: Flight of the FINCH through the java wilderness. IEEE
TEVC 15(2), 166–182 (2011)

12. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement
& code transplants to specialise a C++ program to a problem class. EuroGP 2014

13. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming.
http://www.gp-field-guide.org.uk (2008)

14. Schulte, E., Dorn, J., Harding, S., Forrest, S., Weimer, W.: Post-compiler software
optimization for reducing energy. In: ASPLOS, pp. 639–652 (2014)

15. Sitthi-amorn, P., Modly, N., Weimer, W., Lawrence, J.: Genetic programming for
shader simplification. ACM TOG 30(6), 152:1–152:11 (2011)

16. de Souza, Jerffeson Teixeira, Maia, C.L., de Freitas, F.G., Coutinho, D.P.: The
human competitiveness of search based software engineering. In: SSBSE (2010)
pp. 143–152, IEEE

17. Swan, J., et al.: Gen-O-Fix: An embeddable framework for dynamic adaptive ge-
netic improvement programming. Tech. Rep. CSM-195, Uni. Stirling (2014)

18. Van den Bergh, M., Boix, X., Roig, G., de Capitani, B., Van Gool, L.: SEEDS:
Superpixels extracted via energy-driven sampling. In: ECCV 2012. LNCS, vol. 7578

19. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE
TEVC 15(4), 515–538 (2011)

20. Wu, Fan, Harman, M., Jia, Yue, Krinke, J., Weimer, W.: Deep parameter optimi-
sation. In: GECCO, pp. 1375–1382 (2015)

http://code.opencv.org/projects/opencv/wiki/VisionChallenge#Winners-by-Categories-all-are-winners-this-isnt-in-order-of-priority
http://www.cs.ucl.ac.uk/staff/W.Langdon/gggp
http://daase.cs.ucl.ac.uk/
http://dx.doi.org/doi:10.1145/2739480.2754752
http://dx.doi.org/doi:10.1145/2338965.2336775
http://dx.doi.org/doi:10.1007/978-3-319-09940-8_20
http://dx.doi.org/doi:10.1145/2351676.2351678
http://dx.doi.org/10.1007/978-3-319-20883-1_8
http://dx.doi.org/doi:10.1109/TEVC.2013.2281544
http://dx.doi.org/doi:10.1007/s11219-013-9208-0
http://dx.doi.org/doi:10.1109/TEVC.2010.2052622
http://dx.doi.org/doi:10.1007/978-3-662-44303-3_12
http://www.gp-field-guide.org.uk
http://doi.acm.org/10.1145/2654822.2541980
http://dx.doi.org/doi:10.1145/2070781.2024186
http://dx.doi.org/doi:10.1109/SSBSE.2010.25
http://dx.doi.org/10.1007/978-3-642-33786-4_2
http://dx.doi.org/doi:10.1109/TEVC.2010.2083669
http://dx.doi.org/doi:10.1145/2739480.2754648

	API-Constrained Genetic Improvement
	Introduction and Background
	Applying ACGI to OpenCV Image Segmentation
	Results
	Best of First Generation
	Cleaning up the Best of Run Mutation
	The Six Improvements in the Best of Last Generation

	Related and Future Work
	Conclusions


