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ABSTRACT

Evolving binary mux-6 trees for up to 100 000 generations,
during which some programs grow to more than a hundred
million nodes, suggests the landscape which GP explores
contains some very smooth regions. Although the GP popu-
lation evolves under crossover, our unbounded GP appears
not to evolve building blocks. We do see periods of tens even
hundreds of generations where even although each member
of the population occupies a different point in the genotypic
search space, they are lie at exactly the same point in the phe-
notypic landscape. Phenotypic convergence whilst retaining
genotypic diversity is typical of GP and, we suggest inherent
in highly redundant variable length representations.
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1 INTRODUCTION

Rich Lenski’s experiments in long term evolution in which the
BEACON team evolved bacteria for more than 60 000 gen-
erations and found continued beneficial adaptive mutations,
prompts the same question in computation based evolution.
We report what happens if we allow genetic programming
to evolve for tens of thousands, even a hundred thousand
generations.

As expected, we see bloat but after a few hundred genera-
tions we start to see surprises. Tree growth is not continuous.
Indeed we see many generations where the trees get smaller.
As we look at the very long term distribution of fitness in
Section 2.2 we do not get the whole population reaching one
fitness value and everyone having that fitness in all subse-
quent generations.

Although introns are well known in GP, we find constants
are also required to explain the observed long term evolution.
We confirm the asymmetry of the GP crossover and the
importance of the first parent, which gives the offspring’s
root node.

The fraction of constants in highly evolved trees is fairly
stable despite huge fluctuations in the size of the trees con-
taining them.
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We demonstrate the common assumption that useful code
clusters around the root node and show that in the longer
term this code becomes highly stable and is surrounded
and is protected by many thousands of useless instructions
composed of both introns and constants.

2 RESULTS

2.1 Evolution of Size: Gambler’s Ruin

In all experiments we do see enormous increases in size (see
Figure 1). If everyone in the population has the same fitness,
selection appears to become random and children are as
likely to be smaller than their parents as they are likely to
be bigger. If selection is switched off for many generations,
we see an apparently random walk in average tree size, with
falls and rises. (We return to this in Section 3.) However
there are substantial falls in size which might be due to the
discovery of smaller than average individuals of max fitness
but with a higher than average effective fitness. Nonetheless
over thousands of generations the removal of smaller trees is
sufficient to continue to bloat the population.

2.2 Fitness Convergence

As expected, the number of individuals with maximum fitness
in the population grows rapidly towards 100%. However as
Figure 1 shows, typically it does not remain at 100% but
hovers slightly below 100%. Figure 1 also shows a general
downward trend towards fitness convergence.

2.3 Evolution of Size and Shape

Even after evolving for 1000s of gens in small populations,
we continue to see the impact of fitness selection on the
distribution of tree sizes. And, although the distribution of
tree sizes versus their depths is close to that of random trees,
the distribution of tree sizes does not approach the limiting
distribution Poli predicted assuming no fitness EuroGP-2007

2.4 Evolution of Effective Code

Figure 2 (top right) shows that the size of effective code is
fairly stable. If we look at the effective code in every tree
in the population at generation 500–4000 (Figure 2) we see
they are very similar. Typically the effective part of the code
lies in a few hundred nodes around the root node (yellow)
which is protected against crossover by evolved constants.
The constants head large sacrificial subtrees of ineffective
code. Figure 2 shows the effective code is conserved over
many generations. We see this in all pop=500 runs (except
102, which gets stuck at fitness=62). However the details of
the evolved effective code differ from run to run.
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Figure 2: Effective code in a pop of 500 binary trees after 500, 1000, 2000 and 4000 gens. (Each panel
showing the 496-500 trees with max fitness.) Note the similarity of the eff. code even though separated by
1000s of gens. By gen 4000 although mean size is 105 880, eff. code is limited to the 721 nodes shown. Almost
all the population have 82 eff. nodes in common (yellow). Darker colours indicate eff. code which only occurs
in ≤148 (blue) or ≤22 (black) trees. Code which does not effect any program’s output is not plotted.
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Figure 1: Evolution of program size (black) in 6-
mux pop=500 run. Run stops after gen 5355 when
1st tree exceeds 106 (mean size 260 130). Evolution of
low fitness (red). All low fit (runts) first removed in
gen 312. (Plot has been smooth over 30 gens.) After
gen 312, there are at most 11 trees with fitness < 64.

Figure 3: Ten extended population fifty runs.

3 A LIMIT TO BLOAT

When the bloated trees become so large that number of times
the high fitness core near the root node is disrupted falls well
below one per generation there is no driving force to grow
the trees. Hence there is a balancing point near tree size ≈
popsize × core codesize. Averaged over ten extended runs
over 100 000 generations, the median mean tree size in the
10 populations was 42 507 (see Figure 3).

GP code http://www.cs.ucl.ac.uk/.../GPbmux6.tar.gz
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