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Abstract

We evolve floating point Sextic polynomial populations of
genetic programming binary trees for up to a million gen-
erations. Programs with almost 400 000 000 instructions are
created by crossover. To support unbounded Long-Term Evo-
lution Experiment LTEE GP we use both SIMD parallel AVX
512 bit instructions and 48 threads to yield performance of up
to 149 billion GP operations per second, 149 giga GPops, on
a single Intel Xeon Gold 6126 2.60 GHz server.

Introduction
Nature has had billions of years for evolution to work its way
to the organisms we see today. Not only was a long time
available to achieve results, but many generations passed
before the present. In evolutionary biology, there is discus-
sion about the long-term innovative capabilities of evolution.
Some say, evolution happens on a short time-scale, and even
a few hundred generations are enough to produce completely
different species (Palumbo, 2001; Owen et al., 1990). Oth-
ers maintain that natural evolution is an open-ended process
that will continue to produce novelty, even if many millions
of generations pass (Evans et al., 2012).

Thus different aspects are considered when studying long-
term evolution. One aspect is continuity: If one wants to
study evolution in the laboratory, one should strive to set up
experiments similar to Nature’s evolutionary ”experiment”
that go on for a long time, and are not disrupted. The other
aspect is duration: To attempt to evolve for many genera-
tions, trusting in the turn-over of information during the evo-
lutionary process. How does evolution proceed after 100,
1,000, 10,000 etc. generations of continued evolution? Does
it stagnate? Does it continue to produce surprises?

Richard Lenski and his collaborators have used the evo-
lution of E.coli bacterial strains in the laboratory to examine
these questions. Since 1988, the evolution of these bacte-
rial strains continues, with the experimental conditions be-
ing recorded and bacterial generations being frozen every so
often to conserve a time-slice of evolution of these strains
(Lenski, 1988). This natural system is studied with both as-
pects of long-term evolution in mind: The experiment has
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Figure 1: Evolution of mean absolute error in ten runs of
Sextic polynomial (Koza, 1992) with population of 4000.
(Runs aborted after first crossover to hit 15 million node
limit.) End of run label gives number of generations when
fitness got better (five shown at top right to avoid crowding).

run uninterrupted since 1988, and the fast reproductive cycle
of bacteria allows to study evolution over many generations
(Lenski et al., 2015). In 2019, 70,000 generations have been
reached, with no end to evolution in sight.

We focus on one aspect of these long-term evolutionary
experiments: The number of generations. The medium in
which we consider this question, however, is computational.
We started to investigate what happens if we allow artifi-
cial evolution, specifically genetic programming (GP) with
only crossover (Koza, 1992; Banzhaf et al., 1998; Poli et al.,
2008), to evolve for tens of thousands, even hundreds of
thousands of generations.

With the continuous progress in technology, new hard-
ware has become available, so we built a new GP engine
based on Andy Singleton’s GPQUICK (see next section).
This allowed us to switch from the Boolean to the contin-
uous domain and run experiments of up to a million gen-
erations. Excluding some special applications or Boolean
benchmarks based on graphics hardware (GPUs), at up to
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149 billion GP operations per second (149 giga-GPops, see
Table 3), this appears to be the fastest single-computer GP
system (Langdon, 2013, Tab. 3).

In the Boolean domain we found usually the population
quickly found the best possible answer and then retained
it exactly for thousands of generations (Langdon, 2017).
Nonetheless under subtree crossover we reported interest-
ing population change with trees continuing to evolve. In-
deed we were able to report the first signs of an eventual
end of bloat due to fitness convergence of the whole popu-
lation. We can now report in the continuous domain we do
see continual innovation and improvement in fitness like in
the bacteria experiments. Figure 1 shows that although the
rate of innovation falls (as in Lenski’s E. Coli1 populations),
typically better solutions are found even towards the end of
the runs. In these runs, there are several hundred or even a
few thousand generations where sub-tree crossover between
evolved parents gave a better child.

We are going to run GP far longer than is normally done.
Firstly in search of continual evolution but also noting that
it is sometimes not safe to extrapolate from the first hundred
or so generations. E.g., McPhee (McPhee and Poli, 2001,
sect. 1.2) found that his earlier studies which had reported
only the first 100 generations could not safely be extrapo-
lated to 3,000 generations.

It must be admitted that without size control we expect
bloat2, and so we need a GP system not only able to run
for a million generations3 but also able to process trees with
well in excess of a 100 million nodes4. The new system
we use is based on Singleton’s GPQuick (Singleton, 1994;
Keith and Martin, 1994; Langdon, 1998), but enhanced to
take advantage of both multi-core computing using pthreads
and Intel’s SIMD AVX parallel floating point operations.
Keith and Martin (1994) say GPQuick’s linearisation of the

1The E. Coli genome contains 4.6 million DNA base pairs.
2 GP’s tendency to evolve nonparsimonious solutions has been

known since the beginning of genetic programming. E.g. it is men-
tioned in Jaws (Koza, 1992, page 7). Walter Tackett (Tackett, 1994,
page 45) credits Andrew Singleton with the theory that GP bloat is
due to the cumulative increase in non-functional code, known as in-
trons. The theory says these protect other parts of the same tree by
deflecting genetic operations from the functional code by simply
offering more locations for genetic operations. The bigger the in-
trons, the more chance they will be hit by crossover and so the less
chance crossover will disrupt the useful part of the tree. Hence big-
ger trees tend to have children with higher fitness than smaller trees.
See also Altenberg (1994); Angeline (1994). In Langdon (2017) we
showed prolonged evolution can produce converged populations of
functionally identical but genetically different trees comprised of
the same central core of functional code next to the root node plus
a large amount of variable ineffective sacrificial code.

3 The median run shown in Figure 2 took 39 hours (mean
62 hours). Under ideal growing conditions, a million generations
for E.Coli corresponds to about 38 years.

4 Again referring to the extended runs in Figure 2, crossover
creates highly evolved trees containing almost four hundred million
nodes. These are by far the largest programs yet evolved.

GP tree will be hard to parallelise. Nevertheless, GPQUICK
was rewritten to use 16 fold Intel AVX-512 instructions to
do all operations on each node in the GP tree immediately.
Leading to a single eval pass and better cache locality but
at the expense of keeping a T = 48 wide stack of partial
results per thread.

Although the populations never lose genetic diversity
(Koza’s variety)5, with strong tournament selection (see Ta-
ble 1) even the larger populations tend to converge to have
identical fitness values. However 100% fitness convergence
is only seen in long runs with smaller populations (500 or 48
trees). In contrast, in the Boolean domain (Langdon, 2017),
even in the bigger populations (500) of that study, there are
many generations where the whole population has identical
fitness (but again variety is 100%).

The next section describes how GPQUICK was adapted
to take advantage of Intel SIMD instructions able to process
16 floating point numbers in parallel and to use Posix threads
to perform crossover and fitness evaluation on 48 cores si-
multaneously. The Experiments section describes the float-
ing point benchmark (Table 1). Whilst the Results section
describes the evolution of fitness and size and depth in pop-
ulations of 4000, 500 and 48 trees. It finds the earlier pre-
dictions of sub-quadratic bloat (Langdon, 1999) and Flajolet
limit (depth ≈

√
2π|size| (Langdon, 2000b)) to essentially

hold. More analysis can be found in the technical report
(Langdon and Banzhaf, 2019). We finish with a short dis-
cussion about the continuous evolution permitted by floating
point benchmarks and our conclusion that even something as
simple as digital evolution in the Sextic polynomial genetic
programming benchmark permits continuous innovation.

GPQUICK
First we describe how GPQUICK is used to do sym-
bolic regression on a simple sixth order polynomial
(y=x2(x−1)2(x+1)2 known as the Sextic polynomial)
and then how GPQUICK has been modified to run in par-
allel.

Sextic and GPQuick
Andy Singleton’s GPQUICK (Singleton, 1994) is a well es-
tablished fast and memory efficient C++ GP framework. In
steady state mode (Syswerda, 1990) it stores GP trees in just
one byte per tree node. Using separate parent and child pop-
ulations doubles this (although Koza (1992) shows doubling
is not necessary). The 8 bit opcode per tree node allows
GPQUICK to support a number of different functions and
inputs. Typically (as in these experiments) the remaining
opcodes are used to support about 250 fixed ephemeral ran-
dom constants (Poli et al., 2008). In the Sextic polynomial
we have the traditional four binary floating point operations

5Koza defines variety as the percentage of the population that
has no genetically identical copy (Koza, 1992, p.93)

389



Figure 2: 11 extended runs pop=48. Numbers on right in-
dicate size of largest tree before the run stopped in millions
of nodes. One run (*) converged so that more than 90% of
the trees contain just five nodes. Three of the other four runs
that reached 1 million generations (red) took between half a
day and five days. In all but one run (*) we see repeated sub-
stantial bloat (> 64 million nodes) and subsequent tree size
collapse. Seven runs, in black, terminated due to running out
of memory (on server with 46GB).

(+, −, × and protected division), an input (x) and 250 con-
stants. The constants are chosen uniformly at random from
the 2001 floating point numbers from -1.000 to +1.000. By
chance neither end point nor 0.000 were chosen (see Ta-
ble 1).

The continuous test cases (x) are selected at random from
the interval -1 to +1. At the same time the target value y is
calculated (Table 1). Since both x and y are stored in a text
file, there may be slight floating point rounding errors due to
the standard float⇔string conversions.

Whereas the Sextic polynomial is usually solved with 50
test cases (Langdon et al., 1999), since the AVX hardware
naturally supports multiples of 16, in our experiments we
change this to 48 (i.e. 3 × 16) (Table 1). The multi-core
servers we use each support 48 threads and in the longest
extended runs, we reduce the population to 48 (whereas
in Langdon (2017) the smallest population considered con-
tained 50 trees).

AVX GPQuick
GPQUICK stores the GP population by flattening each tree
into a linear buffer, with the root node at the start. To avoid
heap fragmentation the buffers are all of the same size. The
buffer is interpreted once per test case by multiple recursive
calls to EVAL and the tree’s output is the return value of the
outermost EVAL. Each nested EVAL moves the instruction
pointer one position forward in the tree’s buffer, decodes the
opcode there and calls the corresponding function. In the
case of inputs x and constants a value is returned via EVAL
immediately, whereas ADD, SUB, MUL and DIV will each
call EVAL twice to obtain their arguments before operating
on them and returning the result. For speed GPQUICK’s

FASTEVAL does an initial pass through the buffer and re-
places all the opcodes by the address of the corresponding
function that EVAL would have called. This expands the
buffer 16-fold, but the expanded buffer is only used during
evaluation and can be reused by every member of the pop-
ulation. Thus, originally, EVAL processed the tree T + 1
times (for T=48 test cases).

The Intel AVX instructions process up to 16 floating point
data simultaneously. The AVX version of EVAL was rewrit-
ten to take advantage of this. Indeed as we expect trees
that are far bigger than the CPU cache (≈16 million bytes,
depending on model), EVAL was rewritten to process each
tree’s buffer only once. This is achieved by EVAL process-
ing all of the test cases for each opcode, instead of process-
ing the whole of the tree on one test case before moving on
to the next test case. Whereas before each recursive call to
EVAL returned a single floating point value, now it has to
return 48 floating point values. This was side stepped by
requiring EVAL to maintain an external stack where each
stack level contains 48 floating point values. The AVX in-
structions operate directly on the top of this stack and EVAL
keeps track of which instruction is being interpreted, where
the top of the stack is, and (with PTHREADS) which thread
is running it. Small additional arrays are used to allow fast
translation from opcode to address of eval function, and con-
stant values. AVX instructions are used to speed loading
each constant into the top stack frame. Similarly all 48 test
cases (x) are rapidly loaded on to the top of the stack. How-
ever, the true power of the implementation comes from being
able to use AVX instructions to process the top of the stack
and the adjacent stack frame (holding a total of 96 floats) in
essentially three instructions to give 48 floating point results.

The depth of the evaluation stack is simply the depth of
the GP tree. GPQUICK uses a fixed buffer length for ev-
ery individual in the GP population. This is fixed by the
user at the start of the GP run. Fixing the buffer size also
sets the maximum tree size. Although in principle this only
places a very weak limit on GP tree depth, it has been re-
peatedly observed (Langdon, 2000b) that evolved trees are
roughly shaped like random trees. The mathematics of trees
is well studied (Sedgewick and Flajolet, 1996) in particu-
lar the depth of large random binary trees tends to a limit
2
√
πdtreesize/2e + O(tree size1/4+ε) (Sedgewick and Fla-

jolet, 1996, page 256). (See Flajolet limit in Figure 4.) Thus
the user-specified tree size limit can be readily converted
into an expected maximum depth of evolved trees. The size
of the AVX eval stack is set to this plus a suitable allowance
for random fluctuations and O(tree size1/4+ε). Note, with
very large trees, even allowing for the number of test cases
and storing floats on the stack rather than byte-sized op-
codes, the evaluation stack is considerably smaller than the
genome of the tree whose fitness it is calculating. Additional
details can be found in Langdon and Banzhaf (2019).
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PTHREADS GPquick

The second major change to GPQUICK was to delay fitness
evaluation so that the whole new population can have its fit-
ness evaluated in parallel. As trees are of different sizes,
each fitness evaluation will require a different time. There-
fore which tree is evaluated by which thread is decided dy-
namically. Due to timing variations, even in an otherwise
identical run, which tree is evaluated by which thread may
be different. However great care is taken so that this cannot
affect the course of evolution. E.g., pseudo random numbers
are only generated in sequential code.

EVAL requires a few data arrays. These are all allocated
at the start of the GP run. Those that are read only can be
shared by the threads. Each thread requires its own instance
of read-write data. To avoid “false sharing”, care is taken to
align read-write data on cache line boundaries (64 bytes),
e.g. with additional padding bytes and ((aligned)).
This ensures each thread writes to its own cache lines and
therefore these cached data are not shared with other threads.

Surprisingly an almost doubling of speed was obtained by
also moving crossover operations to these parallel threads.
Since crossover involves random choices of parents and sub-
trees these were unchanged but instead of performing the
crossover immediately a small amount of additional infor-
mation was retained and to be read later by the threads. This
allows the crossover to be delayed and performed in one of
48 C++ pthreads. The results are identical but give an addi-
tional ≈two-fold speed up.

Experiments

We use the well known Sextic polynomial benchmark
(Koza, 1994, Tab. 5.1). Briefly, the task given to GP is to find
an approximation to a sixth order polynomial, x6−2x4+x2,
given only a fixed set of samples, i.e., a fixed number of test
cases. For each test input x we know the anticipated output
f(x), see Table 1. Of course the real point is to investigate
how GP works and how GP populations evolve over time.
We ask ourselves whether it is possible for GP to continue to
find improvements, even for such a simple continuous prob-
lem, as Lenski’s E. Coli experiments are showing, or, like
the Boolean case (Langdon, 2017), whether the GP popu-
lation will get stuck early on and from then on never make
further progress. Note that we here make use of crossover
exclusively, so no random mutations are allowed to intro-
duce any new genetic material during the run. All the vari-
ation the algorithm can make use of must be present in the
first generation.

We ran three sets of experiments. In the first the new GP
systems was set up like the original Sextic polynomial runs
which reported phenotypic convergence (Langdon et al.,
1999, Fig. 8.5). The first set uses a population of 4000, the
second 500 and the last 48.

Table 1: Long term evolution of Sextic polynomial sym-
bolic regression binary trees
Terminal set: X, 250 constants between -0.995 and 0.997
Function set: MUL ADD DIV SUB
Fitness cases:48 fixed input -0.97789 to 0.979541 (randomly

selected from -1.0 to +1.0 input).
Target y = xx(x−1)(x−1)(x+1)(x+1)

Selection: Tournament size 7 with
fitness = 1

48

∑48
i=1 |GP (xi)− yi|

Population: Panmictic, non-elitist, generational.
Parameters: Initial population (4000) ramped half and half

Koza (1992) depth between 2 and 6. 100% un-
biased subtree crossover. 100 000 generations
(stop run if any tree reaches limit 15 106).

DIV is protected division (y!=0)? x/y : 1.0f

Crossover
Each generation is created entirely using Koza’s two parent
subtree crossover (Koza, 1992). (GPQuick creates one off-
spring per crossover.) For simplicity and in the hope that
this would make GP populations easier to analyse, both sub-
trees, the one to be removed and the one to be inserted are
chosen uniformly at random. That is, we do not use Koza’s
bias in favour of internal nodes (functions) at the expense of
external nodes (leafs or inputs). Instead, the root node of the
subtree (to be deleted or to be copied) is chosen uniformly
at random from the whole of the parent tree. This means
there is more chance of subtree crossover simply moving
leaf nodes and so many children will differ from the root
node donating parent by just one leaf.

As mentioned above, once fitness evaluation has been
sped up by parallel processing, for very long trees produc-
ing the child is a surprisingly large part of the remaining run
time and so it, too, can be implemented in parallel. How-
ever, the choice of crossover points is done in sequential
code and remains unaffected by multithreading. This en-
sures the variability introduced by multiple parallel threads
does not change the course of evolution.

Fitness Function
The fitness of every member of every generation is cal-
culated using the same fitness function as (Koza, 1994,
Tab. 5.1). That is, barring rounding errors (previous page),
fitness is given by the mean of the absolute difference be-
tween the value returned by the GP tree on each test case
and the Sextic polynomial’s value for the same test input
(see Table 1). We use tournament selection to choose both
parents.

Like (Koza, 1994, Tab. 5.1), we also keep track of the
number of test cases where each tree is close to the target
(i.e. within 0.01, known as a “hit”). The number of hits is
used for reporting the success of a GP run. It is not used
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Table 2: 10 Sextic polynomial runs with population 4000

Gens err10−9 impr6 hits size106 geni conv ops109

6370 64487 2139 48 14.329 1.200 3981 58.2
8298 145796 2040 48 14.102 1.916 3982 57.4
2323 642006 389 47 13.441 1.387 3995 51.6
7119 507600 608 48 13.668 1.589 3997 55.0

11750 1 3583 48 13.854 1.364 3989 49.8
3412 65561 1277 48 14.348 1.625 3986 45.4
5106 71288 1615 48 14.233 1.146 3988 53.6
6112 728757 1871 48 14.500 1.254 3983 52.9
6679 28853 1741 48 14.022 1.396 3998 43.4
4454 67817 790 48 14.900 1.227 3997 54.9

6Figure 1 gives number of generations which improve on their
parents, whereas here we give strictly better than anything
previously evolved. Hence slight differences.

internally during a GP run. Also, our GP runs do not stop
when a solution is found (48 hits) but continue until either
the user-specified number of generations is reached or bloat
means the GP runs out of memory.

Where needed, floating point calculations are done in
a fixed order, to avoid parallelism creating minor changes
in calculated fitness, which could quickly cause otherwise
identical runs to diverge because of implementation differ-
ences in parallel calculations.

Results
Results Population 4000 trees
In the first set of experiments, we use the standard popu-
lation of 4000 trees. Table 2 summarises the results of 10
runs. In all cases GP found a reasonable approximation to
the target (the Sextic polynomial). Indeed in all but one
run (47 hits) the best trees score 48 out of 48 possible hits.
I.e. they are within 0.01 on all 48 test cases. Indeed in most
cases the average error was less than 10−4. Figure 1 shows
that GP tends to creep up on the best match to the training
data. Typically after several thousand generations, GP has
progressively improved by more than a thousand increas-
ingly small steps. (See Table 2 column 3 and Figure 1).

In all ten runs with a population of 4000, we see enormous
increases in size and all but one are stopped as they hit the
size limit (15 000 000) before reaching 100 000 generations.
Column 5 in Table 2 gives the size (in millions) of the largest
evolved tree in each run. The log-log plot in Figure 3 shows
a typical pattern of subquadratic (Langdon, 2000a) increase
in tree size. The straight line shows a power law fit. In
this run the best fit has an exponent of 1.2. Column 6 of
Table 2 shows that the best fit between generations ten and a
thousand for all 10 runs varies between 1.1 and 1.9.

As expected not only do programs evolve to be bigger
but also they increase in depth. As described above highly
evolved trees tend to be randomly shaped and so as expected
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Figure 3: Evolution of tree size in first Sextic run (popula-
tion 4000). (This run aborted after 6370 generations by first
crossover to hit 15 million node limit.) Straight line shows
best RMS error power law fit between generation 10 and
1000, y = 8.65x1.2001

tend to lie near the Flajolet limit, depth ≈
√
2π|size| (see

Figure 4). (This is also true in the pop=500 and pop=48
runs, see following sections.)

In all ten runs we see some phenotypic convergence. The
“conv” column in Table 2 shows the peak fitness conver-
gence. That is, out of 4000, the number of trees having
exactly the same fitness as the best in the population. Typ-
ically at the start of the run (see Figure 5), the population
contains mostly trees with poorer fitness, but later in the run
the population begins to converge and towards the end of
the run we may see hundreds of generations where more
than 90% of the population have identical fitness. Under
these circumstances, even with a tournament size as high as
7, many tournaments include potential parents with identical
fitness. These, and hence the parents of the next generation,
are decided entirely randomly. However, even in the most
converged population there are at least two individuals with
worse fitness. (In Figure 5 it is at least 19.) As we saw with
the Boolean populations (Langdon, 2017), even this small
number can be enough to drive bloat (Langdon and Poli,
1997) (albeit at a lower rate).

Results Population 500 trees

We repeated the GP runs but allowed still larger trees to
evolve by reducing the population from 4000 to 500 and
splitting the available memory between fewer trees. Table 3
summarises 6 of these runs. Notice two runs do not really
solve the problem and only hit less than half the test cases
(see “hits” column in Table 3). Nonetheless, in all cases
evolution continues to make progress and each GP run finds
several hundred or more small improvements (third column
in Table 3).
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Figure 4: Plot of size and depth of the best individual in
each generation for 10 Sextic polynomial runs with popula-
tion of 4000. Binary trees must lie between short fat trees
(lower curve “Full”) and “Tall” stringy trees. Most trees
are randomly shaped and lie near the Flajolet limit (depth
≈
√
2π|size|, solid line, note log-log scales).

Table 3: 6 Sextic polynomial runs with population 500

Gens err10−6 impr hits size106 geni conv ops109

111582 538 3545 47 399.594 1.558 500 93.8
23937 34313 757 18 202.439 1.736 500 117.3
35783 307 3484 48 227.488 1.436 500 95.8
43356 18373 929 22 267.416 2.181 500 149.2
27713 137 5852 48 327.253 1.928 500 138.9

103953 1765 664 48 230.106 1.408 500 69.6

Since we have deliberately extended the space available to
GP trees, it is no surprise that the trees grow even bigger than
before (column 5 in Table 3). Again bloat is approximately
following a power law. Although in one unsuccessful run
we see a power law exponent greater than 2, mostly growth
is at a (sub-quadratic) rate similar to the bigger population
runs (1.4–2.2 v 1.1–1.9, column 6 in Table 2 (pop 4000)).

Unlike with the large populations, all the runs with popu-
lations of 500 trees showed some cases of complete fitness
convergence (“conv” column in Table 3 is 500). For exam-
ple, in the first Sextic polynomial pop=500 run, the whole
population has identical fitness 33 143 times (30% of the
run). If we concentrate upon the last fitness improvement
in generation 108 763 (2819 before the end of the run). This
new improved Sextic polynomial performance takes over the
whole population in half a dozen generations. However it
fails to totally dominate the population in 861 (31%) of the
remaining generations. Even though the mean number of
lower fitness children is less than one (0.38) it is not zero,
and this (given nearly three thousand generations) is still
enough to double the average size of the trees.
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Figure 5: Fitness convergence in first Sextic polynomial
pop=4000 run. Perhaps because of the continual discovery
of better trees before generation 4975 and the larger popu-
lation size, although the number of tree without the best fit-
ness falls, unlike in the earlier Boolean problem (Langdon,
2017) it never reaches zero. Notice tiny fitness improvement
in generation 4961 resets the population for ten generations.
(Mean prog size (linear scale, dotted black) and best fitness
(log, blue) plotted in the background.)

Results Population 48 trees
In the final experiments the population was reduced still
further to allow even larger trees to be evolved (Figure 2).
These smallest population runs were run with a population
of 48, since this should readily map to the available Intel
multi-core servers.

With the small population, none of the runs solve the
problem. Indeed only three runs got close on 40 or more test
cases (see Table 4). Of the remaining eight, only one finds
a large number of fitness improvements. Seven runs have
only between 3 and 30 generations with fitness improve-
ments, column 3 in Table 4. In three of these, the population
gets trapped at trees with just three nodes which evaluate to
constants 0.0626506, 0.069169 and 0.0830508, although the
population eventually escapes and large trees evolve by the
end of the run. Except for these three runs, all the other runs
contain populations where every member of the population
has identical fitness. Therefore their maximum convergence
is 48 (see “conv” column in Table 4). The final column is
average speed, in giga GP operations/second.

For almost the whole of the first run with 48 trees the
best fitness in the population is fixed but once trees get big
enough further size changes are essentially random (Fig-
ure 2). The best fitness found in this run is given by ro-
bust trees which always return a midpoint value which only
passes close to four test points. Trees which closely matched
more test points were discovered in the first nineteen gener-
ation of this run. However, in terms of fitness, they scored
worse than a constant and so went extinct.
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Table 4: 11 Sextic polynomial runs with population of 48

Gens err10−6 impr hits size106 geni conv ops109

1000000 46215 11 16 63.920 1.633 48 36.5
491618 2748 745 46 396.576 2.060 48 34.9

1000000 46215 7 13 190.654 1.448 48 57.4
689414 4857 448 40 159.949 1.260 48 38.1

1000000 46215 8 14 50.365 1.701 48 26.2
143251 46215 11 14 99.541 1.672 48 54.1
212528 46650 30 14 257.766 na 42 26.7

1000000 46730 3 14 0.000 na 42 .004
958147 23259 1683 18 308.958 1.791 48 53.5
294098 47174 3 12 308.121 na 43 24.5
757830 2985 2921 44 294.821 1.320 48 50.2

Is there a Limit to Evolution?
In the Sextic Polynomial experiments with larger popula-
tions there is no hint of either evolution of fitness or bloat
totally stopping. In the smaller populations, it is both possi-
ble to run evolution for longer and to allow trees to be even
larger. Four of the eleven pop=48 runs reached a million
generations but in the remaining seven, bloat ran into mem-
ory limits and halted the run. Only in one run did we see
anti-bloat, in which the population converged in a few gen-
erations on a small high fitness tree which crossover was
able to replicate across a million generations. Interestingly
two other runs found similar solutions but after thousands of
generations crossover found bloated version of them.

In the binary 6-Mux Boolean problem (Langdon, 2017)
there are only 65 different fitness values. Therefore the num-
ber of fitness improvements is very limited. An end to bloat
was found. By which we mean it was possible for trees to
grow so large that crossover was unable to disrupt the impor-
tant part of their calculation next to the root node and many
generations were evolved where everyone had identical fit-
ness. This led to random selection and random fluctuations
in tree size, i.e. enormous trees but without a tendency for
progressive endless growth.

This did not happen here. Even in some of the smallest
Sextic polynomials runs, we are still seeing innovation in
the second half of the run, with tiny fitness improvements
being created by crossover between enormous parents. Also
we are still slightly short of total fitness convergence.

However, there is a strong relationship between the size
of the population and the success of the runs. All runs of
size 4000 were successful, half of the runs of size 500 were
successful, but none of the runs of size 48 were successful.

Even with populations containing Sextic polynomial trees
of hundreds of millions of nodes, crossover can still be dis-
ruptive and frequently even tiny populations can contain a
tree of lower fitness. This is sufficient to provide some pres-
sure (over thousands of generations) for tree size to increase
on average.

Can bloat continue forever? It is still difficult to be defini-
tive in our answer. We have seen cases where it does not and
of course there are plenty of techniques to prevent bloat (Poli
and McPhee, 2013). But we see other cases where crossover
over thousands of generations can create an innovative child
which allows bloat into a converged population of small
trees. Perhaps more interestingly, we see crossover finding
fitness improvement in bloated trees after many thousand of
generations.

Conclusions
Evolving binary Sextic polynomial trees for up to a million
generations, during which some programs grow to four hun-
dred million nodes, suggests even a simple GP floating point
benchmark allows long-term fitness improvement over thou-
sands of generations.

The availability of multi-core SIMD capable hardware
has allowed us to push GP performance on single comput-
ers with floating point problems to that previously only ap-
proached with sub-machine code GP operating in discrete
domains (Poli and Langdon, 1999; Poli and Page, 2000).
This in turn has allowed GP runs far longer than anything
previously attempted whilst evolving far bigger programs.

Without size or depth limits or biases crossover with
brutal selection pressure tends to evolve very large non-
parsimonious programs, known in the GP community as
bloat (Koza, 1992, page 617). (See also footnote 2 on sec-
ond page.) After a few initial generations, GP tree bloat typ-
ically follows a sub-quadratic power law (Langdon, 2000a).
But eventually effective selection pressure (Nordin, 1997,
sec. 14.2), (Banzhaf et al., 1998, page 187), (Stephens and
Waelbroeck, 1999; Langdon and Poli, 2002) within highly
evolved populations falls, leading to bloat at a reduced
rate. However in this continuous domain we only see the
chaotic lack of bloat found in long-running Boolean prob-
lems (Langdon, 2017) in a few unsuccessful runs with tiny
populations (red plots in Figure 2). Nevertheless in all cases
bloated binary trees evolve to be randomly shaped and lie
close to Flajolet’s square root limit.
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