
7

Genetic Improvement of Data for Maths Functions
WILLIAM B. LANGDON, CREST, Department of Computer Science, University College London, UK
OLIVER KRAUSS, University of Applied Sciences Upper Austria, Austria

We use continuous optimisation and manual code changes to evolve up to 1024 Newton-Raphson numerical
values embedded in an open source GNU C library glibc square root sqrt to implement a double precision
cube root routine cbrt, binary logarithm log2 and reciprocal square root function for C in seconds. The GI
inverted square root x−

1
2 is far more accurate than Quake’s InvSqrt, Quare root. GI shows potential for

automatically creating mobile or low resource mote smart dust bespoke custom mathematical libraries with
new functionality.
CCS Concepts: • Software and its engineering→ Search-based software engineering.
Additional KeyWords and Phrases: evolutionary computing, software engineering, search based software engi-
neering, SBSE, software maintenance of empirical constants, data transplantation, glibc, vector normalisation,
Newton’s method
ACM Reference Format:
William B. Langdon and Oliver Krauss. 2021. Genetic Improvement of Data for Maths Functions. ACM
Transactions on Evolutionary Learning and Optimization, 1, 2, Article 7 (July 2021), 30 pages. https://doi.org/
10.1145/3461016

1 NEW FUNCTIONALITY VIA DATA UPDATE
Even more than forty years after the advent of software engineering, we are still faced with an
industry reliant on human labour. Most research (including genetic improvement GI [61], [31], [50])
concentrates on the code itself. There has been relatively little effort in automating other aspects of
software development such as parameters embedded in the software. We wish to find a radically
new automatic approach to maintaining the numeric and data components of software, which will
yield an increase in human productivity, giving rise to both cost savings and also significantly
reducing delays in introducing new system components.

We provide a small number of examples of converting existing mathematical functions into new
ones. These can be viewed mostly as a demonstration of what evolution can do. We hope that they
will encourage future research.

2 MAINTAINING NUMBERS WITHIN CODE
Many programs contain embedded parameters. Typically these are numeric values, often float or
double, but also integers, e.g. the GNU C library contains more than a million integer constants
(see Figure 1, also [34]). In many cases these parameters relate to the software itself or to simple
facts which are unlikely to change during the program’s lifetime or period of active use. However,
many others ought to be updated. This maintenance problem has been known for a long time
Authors’ addresses: William B. Langdon, W.Langdon@cs.ucl.ac.uk, CREST, Department of Computer Science, University
College London, Gower Street, London, UK, WC1E 6BT; Oliver Krauss, University of Applied Sciences Upper Austria,
Softwarepark 11, Hagenberg, Austria, 4232, oliver.krauss@fh-hagenberg.at.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2688-3007/2021/7-ART7 $Preprint
https://doi.org/10.1145/3461016

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

https://doi.org/10.1145/3461016
https://doi.org/10.1145/3461016
https://doi.org/10.1145/3461016

7:2 W. B. Langdon and O. Krauss

 1

 10

 100

 1000

 10000

 100000

0 1 256 65536 16M 4G 1024G 256T 64Peta 16Exa

0 1 1000 1e6 1e9 1e12 1e15 1e18

c
o

u
n

t

number

0
1031122 positive integers
 29823 negative integers

Fig. 1. The GNU C library, excluding test suite, contains 1 202 711 integer constants. Zero is the most common,
occurring a total of 141,874 times, followed by 1 (19 203) and -1 (6 479). Every integer between -28 and 40 956
occurs at least once. To avoid overlap, positive and negative values are slightly offset vertically.

(Martin and Osborne, 1983 [45, Section 6.8, page 24, Hard Coded Parameters Which Are Subject To
Change]).
Parameters may relate to heuristics within the code, which the developer chose before contact

with real users. Their values perhaps should have been updated shortly after first release. Also
values (e.g. those relating to memory or array sizes) may need updating due to operating on new
hardware, as well as to changes in patterns of use. Other parameters can relate to the problem itself.
For example, chemical reaction rate constants in ozone layer simulations [11]. In some cases the
exact numerical values are critical [11]. Some physical values are known with very high precision,
but for others the state of scientific knowledge can improve over the operational life of the program.
For example, the ViennaRNA package [39] contains more than 50 000 energy binding values. These
are derived from scientific measurements of RNA molecules. Even so, during the relatively short
life of this suite of C programs, knowledge has moved on and various newer versions of these
parameters are available. Recently [38] we showed genetic improvement (GI) could be used to adapt
these 50 000 int values. (The GI values have been distributed with ViennaRNA since version 2.4.5.)
In [38] we used custom mutation and crossover operators to evolve compile time constants within
the C source code. Evolution took about five days (rather than a few minutes or seconds in the
following examples, Sections 5, 6 and 7) to find a new program which on thousands of real examples
gave predictions which were on average 11% more accurate. (Although some were worse, most
were unchanged or better.) Notice that there were no changes to the code. Only data were changed.

As computing is nowmature, maintaining software has become the dominant cost. (Marounek [44,
page 51] quotes figures of more than 90% of total cost.) Moreover, software maintenance routinely
requires highly skilled experts [15, page 65]. Yet a recent survey [46] starts by saying “a relatively

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

https://www.tbi.univie.ac.at/RNA/changelog.html

Genetic Improvement of Data for Maths Functions 7:3

small amount [of search based software engineering (SBSE) research] is related to software main-
tenance”, whilst de Freitas and de Souza [14] do not give a breakdown of the SBSE literature on
software maintenance. Indeed it appears that maintaining embedded constants within existing
packages has received little attention so far. For example, Butler, e.g. [10], considers the maintenance
impact of names given to constants in Java source code, but not how to maintain their values.
Similarly, Tiella and Ceccato [58] consider how to hide constant values, but not how to update
them.

There is some research on parameter tuning, e.g. the ParamILS1 and irace2 tools. However, there
is scarcely any on updating parameters in the code that are not specifically exposed to the user
for tuning. The deep parameter tuning work by Wu et al. [67] being the first known example,
where they optimised for runtime and memory consumption. Unlike Wu et al. [67], we focus on
adapting numerical values. Previous work on evolving new features using GI, either transplanted
portions of one program to another, Marginean et al. [4, 42], or used our grow-and-graft approach
[18, 20, 25, 30]. Marginean et al.’s highly innovative source code transplantation allows automatic
transfer of source code. For example, additional features not currently in the popular open source
C++ editor Kate (such as source code indentation and C call graph layout) were taken from existing
open source code, and using TXL, automatically grafted into Kate. Genetic programming was used
to automatically match variables in the host and donor source code. Grow-and-graft evolves the
new functionality separately (rather than taking it from human written open source code) and
then adds it to existing code (as with automated software transplantation). For example, Pidgin is a
large mature open source instant messaging system written in C. Externally we evolved (“grew”)
a module which, using Google Translate, translated English text into Portuguese and Korean.
This was automatically “grafted” into Pidgin. Our approach here does not require additional code,
just changes within the existing code base. Although here code changes are required, we seek to
encourage research into automated update of embedded data with a few examples.

3 GI CREATING NEW FUNCTIONALITY WITH DATA CHANGES
Most Genetic Improvement research [23, 26, 48–50] has applied evolution to program code. Usually
source code, but also byte code [47], assembler [53] and evenmachine code [54] have been optimised.
A suitable fitness function is essential for such directed evolution. The fitness function may consider
functionality (as here) and/or non-functional properties, such as run-time, energy [6, 9, 52, 62] or
evenmemory [67] consumption. In [37] we considered the problems of using physical measurements
as part of the fitness measure for GI (see also [55]). We apply search based techniques [19] directly
to data values embedded inside the source code, with a view to create new functionality rather
than to improve existing functionality (see Table 1).
In the next section (4) we describe how an existing open source C function within the GNU

C mathematics library implements double precision sqrt using Newton-Raphson. Section 5, cbrt,
Section 6, log2, and Section 7, invsqrt, present evolving 512 or 1024 constants to give mathematical
functions. Sections 5.3, 6.4 and 7.4 find accuracy is typically better than one bit in the IEEE 754
double precision representation, Figure 2, and is never worse than double precision requirements.
Additional motivation, discussion of limitations and possible extensions in Section 8 are followed by
conclusions (Section 9), in which we suggest there is a great need for research into both automated
data update and data transplantation.

1http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
2http://iridia.ulb.ac.be/irace/

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
http://iridia.ulb.ac.be/irace/

7:4 W. B. Langdon and O. Krauss

Table 1. Applying Genetic Improvement to Data Embedded in Source Code

• Establish goal
For example, do we wish to maintain an existing program so that it gives better answers
(a functional change). Or do we need to ensure it retains its behaviour (non-functional change)
but is better in some measurable way? E.g., it is quicker. Alternatively do we want to transform
it to do something different?
• Locate data to be updated and program test cases.
– Define optimisation objective measure.
The objective fitness function will be driven by the goal. Although subjective user driven
improvement, via interactive evolution [57] could be considered, mostly we refer to automatic
optimisation, which requires one or more metrics to drive the search.
Remember that the point of the fitness function is to guide search, not to prove that a trial
solution is correct. As the fitness function is used many times, it may be better to delay
validation until after the search. It may help to subsample the available test data and only use
a small random sample, which can be changed during search. Similarly, if run time depends
on the program’s input data it may be better to choose multiple input data which give short
run times rather than sampling uniformly. That is, it may be better to delay uniform sampling
until the post-optimisation validation stage. If test case data are to be used to validate the
optimised program, remember, to avoid over fitting, to keep a clear separation from input
data used for training and input data used for validation [13].

– Define representation.
What type of embedded data are you hoping to optimise? Is it homogeneous? Does it have
special properties (e.g. multiple of 10, symmetric matrices)?
Can you operate directly on the embedded data, or would an intermediate representation
help?

– Choose search operator(s).
If the embedded data are continuous and homogeneous, will Gaussian mutation be sufficient?
If a mixture of float and Boolean, will a problem specific search operator be needed? Is there
structure in the source code data which can be exploited?
Will a crossover operator help by mixing together good parts of different solutions?
Where problems are new, it may be worth using multiple different mutation and crossover
operators. It may be that the loss in search efficiency from not using the “correct” “optimal”
search operator(s) is small.

– Choose optimisation tool.
Obviously the above choices interact. It may be sensible to choose a representation, a tool, etc.
that you are familiar with and trust rather than starting by seeking optimal choices.
• Apply optimisation tool
• Evaluate results.
If the results are not satisfactory, locate the problem and reiterate the corresponding steps
above. Otherwise stop.

4 AUTOMATED PARAMETER TUNING FOR EVOLVING NEW FUNCTIONALITY
Although there are analytic approaches, all three double precision mathematical functions (cube
root 3√x , binary logarithm log2, Section 6, and and reciprocal square root x−1/2, Section 7) are based
on an existing open source C implementation of the square root function and then using minimal

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

Genetic Improvement of Data for Maths Functions 7:5

Fig. 2. IEEE 754 Double-precision floating-point format (Wikipedia). Notice sign (bit 63, light blue) is zero for
positive numbers.

manual code changes plus artificial evolution (in the form of CMA-ES [17]) to mutate 512 or 1024
constant values for square root into those needed for the new function.
The GNU C library (https://www.gnu.org/s/libc/, 1 250 944 lines of code) contains many imple-

mentations of the square root function (sqrt). Most simply call the underlying hardware’s square
root function. However some versions of the PowerPC do not have sqrt implemented in hardware.
For these the GNU library (sysdeps/powerpc/fpu) provides a C implementation based on table
lookup and Newton-Raphson approximation [43]. The GNU implementation exploits the format of
double precision numbers and Newton-Raphson’s rapid convergence to give an efficient double
precision implementation of sqrt which does not need special hardware. This version of sqrt() was
selected for use as the start for table-based C implementations of the cube root cbrt() 3√x , log2()
and invsqrt() x−1/2 double precision functions.

4.1 Newton-Raphson
Newton-Raphson, invented by Sir Isaac Newton and refined by Joseph Raphson, is an iterative
approximation method for finding the roots of continuous differentiable functions. Essentially we
start with an initial guess x1 for where the root is (see Figure 3). (These start points are hard coded
float constants in glibc’s table-based sqrt.) At x1 we calculate the value of the function f (x1). If
we were spot on with our initial guess f (x1) = 0 and so the root we seek is x1 and we can stop.
Typically we test f (x1) and if it is sufficiently close to zero we stop. If not, we use the value of
f (x1) and its derivative f ′(x1) (sloping red line in Figure 3) to make a new estimate x2 of where the
root is, x2 = x1 −

f (x1)
f ′(x1)

. Again we test f (x2) to see if x2 is sufficiently close and we should stop. In
general xn+1 = xn −

f (xn)
f ′(xn)

and we test each new f (xn) until we get a sufficiently accurate answer.

4.2 GNU C Library sqrt’s use of Newton-Raphson
The table driven PowerPC version of sqrt, e_sqrt.c, Appendix A, uses the format of double precision
numbers (Figure 4). Since

√
2k = 2k/2, to find the square root of the exponent part of x , e_sqrt.c

uses a shift right operation to divide the exponent by two. Secondly it treats the least significant bit
of the exponent plus the fractional part as the normalised version of x lying between 0.5 and 2.0.
e_sqrt.c uses the top nine bits of the normalised number as an index into a table of 512 pairs

of floating point numbers. The first of each pair is used as a start point for the Newton-Raphson
method to find a root of f (x) = x2 − a (where a is the input to sqrt, i.e. we seek x = a

1
2).

As described above in Section 4.1, Newton’s method requires repeated division by the derivative.
The derivative of f (x) is f ′(x) = 2x . For speed e_sqrt.c uses the second of each pair of entries in the
table to store the first estimate of the reciprocal of the derivative, i.e. 1/2x . By using the reciprocal,
the division can be replaced by a (faster) multiplication. Newton-Raphson is also applied to the
estimate of the reciprocal of the derivative. e_sqrt.c says its sqrt “consists of two interleaved Newton-
Raphson approximations, one to find the actual square root, and one to find its reciprocal without
the expense of a division operation. The tricky bit here is the use of the PowerPC multiply-add
operation to get the required accuracy with high speed.” Appendix A.

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://www.gnu.org/s/libc/

7:6 W. B. Langdon and O. Krauss

3x 4x

x

Fig. 3. First iteration of Newton-Raphson (Wikipedia). f ′(x1) is the derivative of f at x1 (i.e. the tangent, thin

red line). Following the tangent at x1 to where it crosses the horizontal line y = 0, gives x2. x2 = x1 −
f (x1)
f ′(x1)

.
In this example x2 is closer than x1 to the root (where thick blue line representing f (x) crosses the line y = 0).
Next iteration we start at x2 and calculate x3 = x2 −

f (x2)
f ′(x2)

. In this example x3 over shoots but x4 is close and
x5 is almost exact. For reasonable functions Newton-Raphson converges to the root quadratically fast.

right shift by 1 bit
Division by 2

sign=0

9 bit index into 512 item table

9 bit index into

start x start 1/2x

__t_sqrt

512 item table

Fig. 4. Left: e_sqrt.c, Appendix A, uses right shift of exponent of positive double (bit 63 = 0) to a) divide
exponent by two and b) merge least significant bit with top 8 bits of fractional part to give nine bit index. Right:
index used with float __t_table containing 512 x1 and 1/2x1 pairs of initial values for Newton-Raphson
iterative solution of

√
x .

In the PowerPC GNU C library for sqrt the next step of the Newton-Raphson iteration for x
(i.e. xn+1) is calculated from the current error and the variable sy, which holds the reciprocal of the
derivative (1/f ′). See Figure 3 and formulae below:
xn+1 = xn −

f (xn)
f ′(xn)

= xn −
x 2
n−a
2xn = xn +

1
2xn × (−error) = xn + sy × (−error)

e_sqrt.c double variable sy = 1
2xn

error = f (xn) = x2n − a
Newton-Raphson converges quadratically fast in ideal circumstances. By starting with an 8 or 9 bit
approximation each iteration improves the accuracy: 16, 32, and finally 64 bits. Thus for double
precision (52 bits, Figure 2) only three iterations are needed. Also for speed e_sqrt.c does not check

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

https://en.wikipedia.org/wiki/Newton's_method

Genetic Improvement of Data for Maths Functions 7:7

 0

2e+153

4e+153

6e+153

8e+153

1e+154

1.2e+154

1.4e+154

-1.5e+308 -5e+307 0 5e+307 1.5e+308

sqrt(x)

 -6e+102

-3e+102

-2e+102

 0

2e+102

3e+102

6e+102

-1.5e+308 -5e+307 0 5e+307 1.5e+308

cbrt(x)

Fig. 5. Left: Double precision square root Right: Double precision cube root

if it has reached the right answer at each iteration but proceeds to do all three iterations in an
unrolled loop. The final step is to restore the adjusted exponent 2 ⌊k/2⌋ .

The open source sqrt code uses a fast fixed three step Newton-Raphson approach. In addition to
an estimate of the derivative of the square root function, Newton-Raphson requires an objective
measure, x2, to tell it how far it has overshot. Notice, although e_sqrt.c uses a table of values, it is
not interpolating. Instead it is actually calculating the true square root to double precision accuracy
in a small number of steps. For speed, it uses the table of starting values to limit the number of
Newton-Raphson iterations needed before it converges on the right answer.

5 OPTIMISING DATA TO GENERATE CUBE ROOT CBRT
Figure 5 shows the sqrt() function we start with alongside the cube root function which we evolve
(note different vertical scales). Following Table 1, our goal is to create a new function, 3

√, using the
already identified data table __t_sqrt. The data are readily separated into 512 pairs, so each pair
can be optimised separately, and with no need for an indirect representation. The test data and
fitness function will be described in Section 5.2.2. We will use CMA-ES (Section 5.2) and its default
genetic operators.

5.1 cbrt Manual Changes
In the spirit of complete documentation and reproducibility, we list all the manual changes, even
though there is overlap between the three new functions.

Whilst in [38] no code changes were needed and here we are primarily concerned with adjusting
data values, nevertheless a few changes to the existing PowerPC sqrt code (Appendix A) were
made by hand so that it could support cbrt. (Similar changes were needed for binary logarithm
log2, Section 6.2, and and reciprocal square root x−1/2, Section 7.2.) For cbrt:

• Various powerPC optimisations were disabled.
• Replaced the trap for negative numbers by returning − 3√−x if x is negative.
• Division of the exponent part of double precision numbers by three is rather more tricky
than division by two. Keeping track of the remainder required the multiplication or division
by 3√2 or

2
3√2 (Section 5.3). The existing constants CBRT2 and SQR_CBRT2 were used.

• The GNU sqrt implementation in sysdeps/powerpc/fpu/e_sqrt.c that we start from, uses
a right shift to do two operations. Firstly to divide the exponent by two. And secondly to
combine the least significant bit of the exponent with the top eight bits of the fractional part,

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

7:8 W. B. Langdon and O. Krauss

CMA xstart x start 1/2x

__t_sqrt

2 2

256

256

CMA x’

512 CMA−ES __t_cbrt seeds
1.5

1

Fig. 6. GI takes half of the open source table for calculating sqrt (__t_sqrt, 1..2, left, also Appendix A) and
uses it to seed CMA-ES 512 times (__t_cbrt, 1..2, right). Since half __t_sqrt is 256 pairs of values, GI creates
the missing 256 pairs of seeds by interpolating between adjacent pairs.

forming a nine bit index into the table (see Figures 4 and 6), effectively mapping numbers
in the range 0.5 to 2 onto the table. The more tricky division by three led to the decision to
exclude the exponent and to just use the top nine bits of the fractional part as the table index.
So numbers in the range 1 to 2 are mapped onto the table, see also Figure 10.

• The constant almost_half was replaced by new constant almost_third = 0.3333333333333334.
• As in e_sqrt.c, the infrequently used recursive code to deal with tiny denormalised numbers
(denorm:) multiplies by 2108. This makes the input bigger by adding 108 to the exponent. To
compensate and return the right value, we now divide the result by the cube root of 2108
(rather than the square root of 2108). The division is implemented as multiplication by the
reciprocal. I.e. multiplication by 3√2−108 = 2−36.

5.2 Automatic Changes to cbrt Data Table using CMA-ES
The __t_sqrt table contains 512 pairs of float. The top 256 correspond to numbers in the range
1 to 2. These were used as start points when evolving the 512 pairs of float in the new table
__t_cbrt (see Figure 6).

The Covariance Matrix Adaptation Evolution Strategy algorithm (CMA-ES [17]) was downloaded
from https://github.com/cma-es/c-cmaes/archive/master.zip It was set up to fill the new __t_cbrt
table one pair (N=2) at a time. Each pair being initially set to either the corresponding pair of values
in __t_sqrt or the mean of two adjacent pairs. The initial mutation step sizes used by CMA-ES were
both set (pairwise) to 3.0 times the standard deviation calculated from the 512 pairs of numbers in
__t_sqrt.

5.2.1 cbrt CMA-ES Parameters. The CMA-ES defaults (cmaes_initials.par) were used, except: the
problem size (N 2), the initial values and mutation sizes were loaded from __t_sqrt (see previous
section) and various small values concerned with run termination were set to zero (stopFitness,
stopTolFun, stopTolFunHist, stopTolX). The initial seed used for pseudo random numbers was also
set externally.

5.2.2 cbrt Fitness Function. CMA-ES is run separately for each of the 512 bins. Each bin corresponds
to a pair of values in __t_cbrt. The search for an optimal pair was guided by the fitness function, see
Figures 7 and 8. Each time CMA-ES proposed a pair of values, their fitness is assessed by loading
them into __t_cbrt and running the cbrt code with the modified __t_cbrt on three test points.
Three test points gives a good tradeoff between simplicity, run time, reliability and avoiding

over fitting. They were: the lowest value for the __t_cbrt entry, the mid point and the top most
value. As we shall see these three points were sufficient to avoid over fitting. The cbrt function
was called (using the updated __t_cbrt) for each and a sub-fitness value calculated with each of the
three returned double. The sub-fitnesses were combined by adding them.

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

http://cma.gforge.inria.fr/cmaes_sourcecode_page.html#C
https://github.com/cma-es/c-cmaes/archive/master.zip

Genetic Improvement of Data for Maths Functions 7:9

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1e-16 1e-14 1e-12 1e-10 1e-08 1e-06 0.0001 0.01 1 100

s
u
b

fi
tn

e
s
s

|diff| = absolute difference between cbrt(x)**3 and x

0

Fig. 7. Plot of one subfitness v. |diff |. Greater than 1 (note discontinuity) subfitness is linear in |diff | and <1
it is logarithmic in |diff |. The evolving cbrt is run on each test point x and the difference |(cbrt(x))3 −x | found.
The goal is to minimise all of the differences. (Note log horizontal scale with perfect solution |diff |=0 in the
left hand corner.) Total fitness given by summing subfitness for each of three test points. See also Figure 8.

Each sub-fitness took the output of cbrt, cubed it and took the absolute difference between this
and the corresponding test value. If they were the same, the sub-fitness is 0, otherwise it was
positive. Since when cbrt is working well, the differences are very small, they were re-scaled for
CMA-ES. If the absolute difference was less than one, its log was taken, otherwise the absolute
value was used. However, in both cases, to prevent the sub-fitness from being negative, log of the
smallest feasible non-zero difference DBL_EPSILON was subtracted. However, more recent work
suggests that CMA-ES may not require log scaling [22].

CMA-ES stopped when the difference on all three test points was zero.

5.2.3 cbrt Restart Strategy. When CMA-ES failed to find a pair of values for which all three test
cases pass, it was run again with the same initial starting position and mutation size, but a new
pseudo random number seed. Mostly CMA-ES found a suitable pair in one run, but in 107 of 512
cases it was run more than once. (In no case was CMA-ES run more than 4 times on a particular
pair.)
Figure 9 shows the cbrt optimised values for the pairs of table values compared to the starting

seed values taken from the GNU library values (horizontal axis). Although Figure 9 shows, for cbrt,
the final values are close to the initial seed values, later work [22] suggests seeding CMA-ES is
perhaps not essential and CMA-ES can optimise the table values without seeding.

5.3 Testing the Evolved cbrt Function
The cbrt testing strategy (below) will also be used for binary logarithm log2, Section 6.4, and
reciprocal square root x−1/2, Section 7.4.

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

7:10 W. B. Langdon and O. Krauss

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

fitness

start x

start derivative x’

fitness

Fig. 8. Example fitness landscape for 3√x (goal is to minimise). This fitness guides CMA-ES to find a pair
of x ,x ′ values for the first bin in __t_cbrt (x=1.0). The other test points for this bin are x + 1/1024, and
≈ x + 1/512 (i.e. min, mid point and max value). The pair of x ,x ′ values chosen by CMA-ES must give zero
error (subfitness = 0, Figure 7) on all three test points for this bin. In total there are 512 bins, which are solved
individually.

The pairs of float values found by CMA-ES are shown in Figure 10. The glibc-2.27 powerPC
IEEE754 table-based double sqrt function should produce answers within one bit of the correct
solution. On 1 536 tests of large integers (≈ 1016) designed to test each of the 512 bins 3 times
(minimum, maximum and a randomly chosen point) the largest discrepancy between (cbrt(x)**3)
and x was three (i.e. 6.66 10−16). In all tests, including those described in the rest of this section, this
only arose when the exponent part of the double was not a multiple of 3. This requires the cbrt
code to do an extra multiply or divide by 3√2 or

2
3
√
2 (i.e. CBRT2 or SQR_CBRT2, see Section 5.1),

apparently resulting in additional loss of precision.
As well as ad-hoc testing, and the large positive integer tests mentioned in the previous paragraph,

cbrt was tested with 5 120 random numbers uniformly distributed between 1 and 2 (the largest
deviation was two3), 5 120 random scientific notation numbers (e.g. 1.998343e-302) and 5 120 random
64 bit patterns. Half the random scientific notation numbers were negative and half positive. Half
were smaller than one and half larger. The exponent was chosen uniformly at random from the
range 0 to |308|. In one case a random 64 bit pattern corresponded to NAN (Not-A-Number) and
cbrt correctly returned NAN. In most cases cbrt returned a double, which when cubed was its input
or within one bit of it. In some cases the cubed answer was two from the input. The maximum
deviation was three.

6 LOG2
Unlike the deep parameter tuning work by Wu et al. [67], our goal is not to improve existing
functionality but to use the framework to create new functionality. Also it is related to data

3 2 at the least significant part of IEEE754 double precision corresponds to 4.44 10−16.

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

Genetic Improvement of Data for Maths Functions 7:11

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
M

A
-E

S
 c

b
rt

 o
u

tp
u

t

CMA-ES seeded from sqrt_t

x
derivative

Theory

Fig. 9. Plot showing modification from sqrt table values (horizontal axis) to give corresponding cbrt table
value (vertical axis). 512 CMA-ES runs. “Theory” lines given by analytic approaches comparing 2√x and 3√x
and their derivatives.

transplanting as almost all the changes are related to numbers rather than to code (c.f. program
transplanting [42],[41]) as data are transferred from the square root function to log2 (Figure 11).
However they are heavily adapted by CMA-ES [17] once in their new home.

It should be pointed out that log is a very well known function and there are existing computa-
tionally efficient ways to calculate it. Here we use it only as an example.

We extend the interesting class of programs that can be created from existing programs primarily
by automatically changing data embedded within them using optimisation techniques to include
log2. As with the previous example (Section 5) we can use Table 1 as a guide. Naturally it leads to
similar design choices. The next sections, where we describe the experiment which evolved log2
from the GNU C library sqrt, follow a similar structure to cbrt in Sections 5.1 to 5.3. However at
the end of Section 6.4 we conclude that there are probably simpler implementations of loд2.

6.1 Evolving log2 Data Table via CMA-ES
As cbrt above, we use the existing glibc table driven implementation of the square root function
sqrt and mutate the constant values in sqrt’s table to give a table driven implementation of the
logarithm to base 2 function (log2).

6.2 log2 Manual Changes
As mentioned in Section 5.1, we are primarily concerned with adjusting data values but some
changes to the existing powerPC sqrt code, Appendix A, were made by hand so that it could support
log2:

• Various powerPC optimisations were disabled.

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

7:12 W. B. Langdon and O. Krauss

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

E
v
o
lv

e
d
 p

a
ir
s
 o

f
_
_
t_

c
b

rt
 t

a
b
le

 v
a

lu
e
s

Normalised input to cbrt(x)

x
derivative

Theory

Fig. 10. 512 x ,derivative of x pairs of numbers found by CMA-ES for __t_cbrt. Horizontal axis is the normalised
argument of cbrt which corresponds to each x ,x ′ pair in __t_cbrt.

 0

2e+153

4e+153

6e+153

8e+153

1e+154

1.2e+154

1.4e+154

-1.5e+308 -5e+307 0 5e+307 1.5e+308

sqrt(x)

-1022

-512

 0

 512

 1024

-1.5e+308 -5e+307 0 5e+307 1.5e+308

log2(x)

Fig. 11. Left: Double precision square root Right: Double precision log2

• For simplicity the trap for negative numbers is implemented by failing an assert4.
• Since log2(2k × x) = k + log2(x), e_sqrt.c’s division of the exponent part of double precision
numbers by two is replaced by simply adding its value to the final result.

• As with cbrt, the top nine bits of the fractional part are used as the table index. Thus numbers
in the range 1 to 2 are mapped onto the table’s 512 entries. See also Figure 13.

4The GNU C library provides a sophisticated but complicated mechanism for raising exceptions, which would have to be
used if the GI version of log2 were to be incorporated back into glibc.

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

Genetic Improvement of Data for Maths Functions 7:13

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
M

A
-E

S
 l
o

g
2
 o

u
tp

u
t

CMA-ES seeded from sqrt_t

x
Evolved value

Theory

Fig. 12. Plot showing modification from sqrt table values (horizontal axis) to give corresponding log2 table
value (vertical axis). 512 CMA-ES runs. (Diagonal blue line shows x=y, i.e. no change.)

• The Newton-Raphson objective function for sqrt (i.e. x2) is replaced by 2x . Since the derivative
of log2(x) can be calculated exactly from x (using the existing constant M_LOG2El), it is not
necessary to store it in the table or to estimate it or update the current estimate. Hence the
table need only contain 512 values (rather than 512 pairs of values) and so the lines of code
to maintain variables sy, sy2 and e can be removed. Similarly the constant almost_half can
also be removed.

• e_sqrt.c, see end of Section 5.1 and Appendix A, contains infrequently used recursive code to
deal with tiny denormalised numbers (denorm:). This makes the number bigger bymultiplying
by 2108. To undo this and so return the correct result, the new log2 code subtracts 108,
i.e. log2(2108), (in place of dividing by

√
2108) to give the final result.

6.3 Evolving the log2 Data Table with CMA-ES
The __t_sqrt table contains 512 pairs of float. In e_sqrt.c each pair is the start point and starting
derivative for the fixed iteration Newton-Raphson algorithm. As before, Section 5.2, only float
precision is needed for the start points. Newton-Raphson will converge rapidly to double precision
accuracy. By exploiting the IEEE754 floating point representation, the sqrt code converts all input
x values into one of 512 possible starting bins. Each corresponding to an entry in __t_sqrt. For the
new log2 code we do not need start values for the derivative, so the new table __t_log2 becomes
512 float, which we are going to evolve using CMA-ES [17].
The top 256 __t_sqrt pairs correspond to numbers in the range 1 to 2. They become CMA-ES’s

initial (seed) value when it evolved the new table __t_log2. (CMA-ES is run 512 times, see Figure 12).
CMA-ES was set up to fill the float table one at a time. As with cbrt, Section 5.2, each value is

initially set to either the corresponding value in __t_sqrt or the mean of two adjacent pairs. The

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

7:14 W. B. Langdon and O. Krauss

initial mutation step size used by CMA-ES was set to 3.0 times the standard deviation calculated
from the first of each of the 512 pairs of numbers in __t_sqrt.

6.3.1 CMA-ES Parameters for log2. The same CMA-ES parameters as were used for cbrt, Sec-
tion 5.2.1, were used for log2, except the problem is one dimensional (i.e. N 1) rather than 2.

6.3.2 CMA-ES log2 Fitness Function. The log2 fitness function follows that used for cbrt, Sec-
tion 5.2.2. Each time CMA-ES proposes a value (N=1), it is converted into a float and loaded into
__t_log2 at the location that CMA-ES is currently trying to optimise. The fitness function uses three
fixed test double values in the range 1.0 to 2.0. These are: the lowest value for the __t_log2 entry,
the mid point and the top most value. Our log2 function is called (using the updated __t_log2) for
each and a sub-fitness value calculated with each of the three returned double. The sub-fitnesses
are combined by adding them.

Each sub-fitness takes the output of our log2, and takes the absolute difference between this and
the GNU log2 library function. If they are the same, the sub-fitness is 0, otherwise it is positive.
Since when our log2 is working well, the differences are very small, they are re-scaled for CMA-ES.
If the absolute difference is less than one, its (natural) log is taken, otherwise the absolute value
is used. In both cases (i.e. as long as the difference is not zero), to prevent the sub-fitness being
negative, log of the smallest feasible (i.e. encountered) non-zero difference is subtracted (i.e. a
constant, 40.0, is added).

CMA-ES will stop when the fitness is zero. That is, the difference on all three test points is zero.

6.3.3 log2 Restart Strategy. Although a restart strategy was provided (as Section 5.2.3), in all 512
runs CMA-ES found a value for which all three test cases passed. Again the first reported solution
was used. (Total run time 6 seconds).

6.4 Testing the Evolved log2 Function
The float values found by CMA-ES are shown in Figure 13. Figure 13 makes plain, that for a
function as smooth as logarithm, no great care is needed in starting Newton-Raphson and more-or-
less any reasonable value would do. Nonetheless we will continue to show that our evolved table
driven version of the binary logarithm works as well as the GNU C library’s log2. The glibc-2.27
powerPC IEEE754 table-based double sqrt function is supposed to produce answers within one
bit of the correct solution. On 1 536 tests of large integers (≈ 1016) designed to test each of the 512
bins 3 times (minimum, maximum and a randomly chosen point) our GI log2 always came within
DBL_EPSILON (i.e. 2.2 10−16) of the correct answer.
As well as the large positive integer tests mentioned in the previous paragraph, our log2 was

tested with 5 120 random numbers uniformly distributed between 1 and 2 (the largest deviation
was in the least significant part of IEEE 754 double precision corresponding to 4.44 10−16). It was
also tested on 5 120 random scientific notation numbers and 5 120 random 64 bit patterns. Half
the random scientific notation numbers were negative and half positive. Half were smaller than
one and half larger. The exponent was chosen uniformly at random from the range 0 to |308|. In
one case a random 64 bit pattern corresponded to NAN (Not-A-Number) and our log2 correctly
returned NAN. In all other cases our log2 returned a double, which when fed into the GNU C
library exp2 function gave its input exactly or gave a number within one bit of the closest value
which could be inverted by exp2 to yield the original value.

In order to calculate the next iteration, Newton-Raphson requires an objective function (Figure 3),
we use exp2 in the objective function. Naturally this limits the usefulness of the Newton-Raphson
approach for log2. f (x) = log2(x) = log(x)/log(2) so the derivative is f ′(x) = 1/(x log(2)) and so
the reciprocal needed by Newton-Raphson is 1/f ′(x) = x log(2), which can be easily calculated.

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

Genetic Improvement of Data for Maths Functions 7:15

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

E
v
o

lv
e
d
 _

_
t_

lo
g
2

 t
a

b
le

 v
a
lu

e

Normalised input to log2(x)

CMA-ES
Theory

Fig. 13. 512 numbers found by CMA-ES for use as start points for Newton-Raphson three step calculation of
the binary logarithm, i.e. the values in the float array __t_log2. The horizontal axis is the normalised input
to log2 corresponding to each value in __t_log2.

Whereas in sqrt (and our cbrt) Newton-Raphson maintains and refines an estimate of 1/derivative
at each step. Removing the code to do this greatly simplifies our GI log2. Further Figure 13 suggests
that CMA-ES had almost no work to do and any reasonable estimate of log2, such as x − 1, would
perhaps be sufficient. This would also allow the removal of the whole of the __t_log2 table of start
values and deleting even more of the glibc sqrt source code.

7 QUAKE AND x−
1
2

Quake was a first person shooter video game from the end of the second millenium C.E. It was
designed to run on single user consumer electronics, such as personal computers and home video
game consoles. For our purposes, it is noteworthy because it made extensive use of the reciprocal
square root function (x− 1

2) in computer illumination calculations at a time when lack of hardware
support made x−

1
2 expensive to compute. To produce high quality video displays many such

calculations are needed. And yet there is very little time for calculation if the software is to achieve
satisfactory interactive real-time response and refresh the user’s video display at an acceptable rate.
Quake solved this computational bottleneck by using a fast approximation to the reciprocal square
root5. Today graphics cards (GPUs) provide hardware support for x− 1

2 specifically for interactive
video games like Quake.

The GNU C library does not include invsqrt (x− 1
2). Although invsqrt can be readily calculated by

taking the reciprocal of
√
x . Nonetheless even on powerful modern processors, typically division is

5https://en.wikipedia.org/wiki/Fast_inverse_square_root

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

https://en.wikipedia.org/wiki/Fast_inverse_square_root

7:16 W. B. Langdon and O. Krauss

 0

2e+153

4e+153

6e+153

8e+153

1e+154

1.2e+154

1.4e+154

-1.5e+308 -5e+307 0 5e+307 1.5e+308

sqrt(x)

 0

 5e+160

 1e+161

 1.5e+161

 2e+161

 2.5e+161

 3e+161

 3.5e+161

 4e+161

 4.5e+161

-1.5e+308 -5e+307 0 5e+307 1.5e+308

1/sqrt(x)

Fig. 14. Left: Double precision square root Right: Double precision inverted square root

more expensive than multiplication. Not all processors provide hardware support for sqrt. Although
hardware support for division is common, it need not be universal andmay be provided by expensive
software emulation. As computing becomes ubiquitous, with the internet-of-things and in particular
mote computing, there will be a demand to run increasingly sophisticated algorithms (such as
computer vision and machine learning) which may require vector normalisation on non-standard
hardware lacking support for some mathematics functions and basic facilities we usually take for
granted (such as a power supply). Hence there may be a demand for non-conventional mathematics
implementations possibly providing unconventional trade-offs with energy consumption [40] or
accuracy [59, 64] and a software based solution may be preferred to hardware circuits, such as [21].

As before (Sections 5 and 6) we can follow Table 1. We again start from e_sqrt.c (Appendix A) and
use CMA-ES plus manual code changes to evolve a double precision table driven implementation
of the reciprocal square root function x−

1
2 (Figure 14).

The following section (7.1) explains how to convert e_sqrt.c into 1/
√
x using manual changes

(Section 7.2) and evolution (7.3). Section 7.4 shows the new function produces valid answers. We
finish Section 7 with a comparison with Quake (Section 7.5) and discussion of possible other uses
of x− 1

2 (Section 7.6).

7.1 Evolving invsqrt x−
1
2

7.1.1 Newton-Raphson Solves x−
1
2 . The function whose root we want is f (x) = 1

x 2 −input. (I.e. what
value of x = 1√

input
?) The derivative of f (x) is f ′(x) = −2

x 3 .
The first iteration of Newton-Raphson (Section 4.1) is:

x2 = x1 −
f (x1)
f ′(x1)

x2 = x1 +
(
1
x 2
1
− input

)
×

x 3
1
2

x2 = x1 +
(x1−x 3

1 input)
2

Notice this formulation means we do not need to estimate x− 1
2 for the derivative and so we can

avoid maintaining an estimate of its reciprocal but at the cost of three multiplications. Future
GI work might seek optimal processor specific tradeoffs between memory needed to hold the
Newton-Raphson estimate of the reciprocal of the derivative and processing time.

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

Genetic Improvement of Data for Maths Functions 7:17

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

C
M

A
-E

S
 i
n
v
s
q

rt
 o

u
tp

u
t

CMA-ES seeded from sqrt_t

x
Evolved value

Fig. 15. Evolved change from sqrt table values (horizontal axis) to corresponding invsqrt table value (vertical
axis). 512 successful CMA-ES runs. (Diagonal blue line shows y=x, i.e. no change.)

7.2 invsqrt Manual Changes
As with cbrt and log2 (Sections 5.1 and 6.2) a small number of similar changes are needed before
running evolution on the data table.

• The construction of the nine bit indexing operation is essentially unchanged but must take
into account the table contains 512 float single values, not 512 pairs of float.

• The code to maintain the estimate of the reciprocal of the derivative was commented out.
• The new formula (Section 7.1.1) for the Newton-Raphson step is used (three times).
• The exponent part of the original floating point number must not only be divided by two (as
in e_sqrt.c) but also must be negated. Since the IEEE 754 standard uses 11 unsigned bits to
represent the exponent, this is accomplished by a right shift and then subtracting from the
mid point (1023 = 2(11−1) − 1).

• Dealing with denormalised double precision numbers is accomplished as in e_sqrt.c except
the constant 2−54 is replaced by 254 (see end of Appendix A).

7.3 CMA-ES Evolves x−
1
2 Data Table

The __t_sqrt table contains 512 pairs of float, corresponding to numbers in the range 0.5 to 2. The
first of each pair was used as the start point when evolving the 512 float in the new table (see
Figures 15 and 16).
We again use CMA-ES with initial values and the initial mutation step size based on __t_sqrt

(Section 5.2).

7.3.1 invsqrt CMA-ES Parameters. The same CMA-ES parameters as were used for log2, Sec-
tion 6.3.1, were reused for x− 1

2 .

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

7:18 W. B. Langdon and O. Krauss

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2

E
v
o
lv

e
d
 N

e
w

to
n
-R

a
p

h
s
o

n
 i
n

v
s
q
rt

 t
a

b
le

 v
a

lu
e

Normalised input to invsqrt(x)

CMA-ES
Theory

Fig. 16. 512 GI table values. Starts for 3 iterations of Newton-Raphson calculation of x−
1
2 .

7.3.2 invsqrt Fitness Function. The CMA-ES used for x− 1
2 is similar to that used for cbrt, Section 5.2.2,

and log2, Section 6.3.2, but as there are some difference in detail we next give a full description of it.
Each time CMA-ES proposes a value (N=1), it is converted from a double into a float and loaded

into the table at the location that CMA-ES is currently trying to optimise. The fitness function uses
three test double values in the range 0.5 to 2.0. These are: the lowest value for the table entry, the
mid point and the top most value. The manually written code is called (using the updated table) for
each and a sub-fitness value calculated with each of the three returned double. The sub-fitnesses
are combined by adding them.
Each sub-fitness takes the output of manual code, and reverses it (i.e. squares it and then takes

the reciprocal) and takes the difference between this and the corresponding test value. Of course if
everything is working then they are the same. If they are the same, the sub-fitness is 0, otherwise it
is positive. Since when invsqrt is working well, the differences are very small, they are re-scaled for
CMA-ES. If the absolute difference is less than one, its natural log is taken, otherwise the absolute
value is used. However, in both cases, to prevent the sub-fitness being negative, log of the smallest
feasible non-zero difference DBL_EPSILON is subtracted.

CMA-ES will stop when the difference on all three test points is zero.
Since all the calculations are done as double precision approximations a certain degree of

rounding inaccuracy can be expected. If the difference is really small, it may be treated as zero. To
decide if the difference is small enough, the reverse operation is repeated for the double slightly
bigger (i.e. larger = multiplied by 1+DBL_EPSILON) and slightly smaller (i.e. smaller = divided by
1+DBL_EPSILON) to give two new differences. The original answer is treated as close as possible
to the right answer, i.e. fitness is zero, if either: 1) the original difference was zero or smaller than
both the absolute difference of either smaller or larger. Or 2) the original difference is no more than
2×DBL_EPSILON and it lies between d_smaller and d_larger.

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

Genetic Improvement of Data for Maths Functions 7:19

 32

 64

 96

 128

 160

 192

 224

 256

 288

 320

 352

 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2

C
M

A
-E

S
 f

u
n

c
ti
o
n

 e
v
a
lu

a
ti
o
n

s
 f
o

r
in

v
s
q

rt

x

ok
restart

Fig. 17. CMA-ES finds it very easy to evolve 512 new start points for x−
1
2 when starting with data for x

1
2 .

(Mean 38.8 fitness evaluation.) There is no strong correlation with change to initial seed value (Figure 15).
However all 20 of the runs which were restarted (×) are for x>1.

7.3.3 invsqrt Avoiding Returning Negative Values. Notice all the steps in the fitness function (pre-
vious section) do not require comparison with an existing implementation. They take a purest
approach of taking the inverse function (f −1(x) = x−2) and seeing how closely f −1(y) resembles
the initial input. But notice f −1(x) is not monotonic. In particular f −1(−x) = f −1(x). Thus from
a mathematical perspective if y is a solution, then so too is −y. In one run evolution found such
negative solutions to 1/

√
x . Although mathematically sound, programming standards would not

allow negative values. Therefore the fitness function was adjusted, so that negative numbers appear
to be distant from 1/

√
x , by adding 2x to the fitness objective. (Remember 0.5 ≤ x < 2 during

testing and CMA-ES is minimising.)

7.3.4 invsqrt Restart Strategy. We use the cbrt restart strategy, Section 5.2.3. That is, if CMA-ES
fails to find a suitable value for any of the 512 table values, it is run again with a different pseudo
random seed but with the same initial starting position and mutation step size. In 494 of 512 cases
CMA-ES found a suitable value in one run, but in 16 cases it was run twice, and in 2 it was run
three times. To run CMA-ES 532 times took six seconds in total. Figures 17 and 18 shows the effort
reported by CMA-ES for each evolutionary run.

7.4 Testing the Evolved invsqrt
Testing is based on that for cbrt, Section 5.3, and log2, Section 6.4. Similarly in all cases invsqrt
produced a correct double precision answer.
On 1 536 tests of large integers (≈1016) designed to test each of the 512 bins 3 times (minimum,

maximum and a randomly chosen point) our GI invsqrt always came within a relative error of
DBL_EPSILON (i.e. 2.22 10−16) of the best possible answer.

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

7:20 W. B. Langdon and O. Krauss

 0

 5

 10

 15

 20

 25

 30

 35

 0 32 64 96 128 160 192 224 256 288 320 352

N
u
m

b
e
r

o
f
in

v
s
q
rt

 C
M

A
-E

S
 r

u
n

s

CMA-ES function evaluations for invsqrt

ok x<1 mean 29.3
ok x>1 mean 38.5

restart

Fig. 18. Histogram (bin size 4) of number fitness evaluations per run for successful runs and for 20 runs
which did not find an acceptable solution. Data as Figure 17. Excluding where CMA-ES was restarted (blue
dashed line), search time for 1 < x < 2 (black dashed line) is similar to 0.5 < x < 1 (red solid line).

Aswell as ad-hoc testing, and the large positive integer tests mentioned in the previous paragraph,
invsqrt was tested with 5 120 random numbers uniformly distributed between 1.0 and 2.0. (The
largest relative deviation was 1.5 DBL_EPSILON.) It was also tested on 5 120 random scientific
notation numbers and 5 120 random 64 bit patterns. Half the random scientific notation numbers
were negative and half positive. Half were smaller than one and half larger. The exponent was chosen
uniformly at random from the range 0 to |308|. In one case a random 64 bit pattern corresponded to
NAN (Not-A-Number) and invsqrt correctly returned NAN. Again, in most cases invsqrt returned
a double, which when squared and inverted was its input or within one bit of it. The maximum
deviation from from the best possible answer was two in the fractional part, Figure 2 (i.e. a maximum
relative error of DBL_EPSILON).

7.5 Comparison withQuake
The Quake (Section 7) fast inverted square root code, InvSqrt, was downloaded from stack overflow6

and subject to the same tests as the evolved invsqrt (Section 7.4). In terms of functionality Quake’s
InvSqrt is far worse:

• Quake InvSqrt gave the correct result to floating point precision in only 45 of the 16 903 tests.
Often the result is up to 0.17% out. Unsurprisingly it never gave an answer correct to double
precision accuracy.

• Quake InvSqrt does not deal with negative numbers. It may return inf but there are cases
where it returns an incorrect floating point number.

6https://stackoverflow.com/questions/268853/is-it-possible-to-write-quakes-fast-invsqrt-function-in-c See also Q_rsqr in
https://en.wikipedia.org/wiki/Fast_inverse_square_root (11 March 2019).

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

https://stackoverflow.com/questions/268853/is-it-possible-to-write-quakes-fast-invsqrt-function-in-c
https://en.wikipedia.org/wiki/Fast_inverse_square_root

Genetic Improvement of Data for Maths Functions 7:21

Fig. 19. Example of IEEE 754 single precision floating-point format (Wikipedia).

• Unsurprisingly Quake InvSqrt does not deal with double precision numbers outside the range
of floating point precision (cf. Figures 2 and 19). It has odd behaviour for numbers smaller
than 1.5 10−37 and bigger than 3.3 1038.

7.6 Other uses of invsqrt

Uses of the reciprocal square root function (invsqrt or x− 1
2) include computer graphics, artificial

neural networks and machine learning, e.g. to normalise vectors.

8 DISCUSSION
There is some similarity with deep parameter tuning (also known as Deep Parameter Optimisation)
[67][66][56][65][8][7][63][5]. Wu’s deep parameter tuning [66, 67] uses search based techniques
to both expose and then tune values buried in existing source code. However Wu [67] deals with
relatively few parameters, rather than more than five hundred. Also [67] seeks to tune existing
functionality rather than, as here, to use data changes to create a new function, or to transplant
existing functionality from one program to another [42][51][18].
Sections 2 and 3 and the previous paragraph have briefly covered the existing literature. They

make clear that, apart from our own recent work [38] [35] [36] [28], the problem of automatic
update of values embedded in existing software has been little studied.
Nowadays where much of software development is performed as continuous integration (CI),

it may not be clear where the boundaries between development, bug-fixing and maintenance
lies. Nonetheless the cost of software maintenance remains staggering. It is not uncommon for
programs to contain, sometimes large numbers of, embedded constants. These may be critical to
the software’s performance, and, although the problem has been known for a long time [45], there
is as of yet very little research on automatically maintaining them.

Even parameters given by scientific measurement can be subject to change in just a few years [38].
In the case of one well used scientific package (ViennaRNA [35]), there are more than 50 000 integers
which represent scientific knowledge. They had been deliberately corralled, to separate them in the
source code, so that they could be updated as knowledge of the science increases. However, due
to the expert manual effort involved, they had been updated by hand only once in several years,
during which the software has been in routine use around the world. As an initial demonstration,
we were able to show search based techniques could automatically update these compile time
constants [38]. Andronescu et al. [3] have also automatically updated these parameters. They used
constraint optimization. Nevertheless, our GI did significantly better [38, Fig. 4].
Section 4 expands parameter maintenance to the novel idea of creating new system software

from existing functions via automated parameter tuning. Although we have used CMA-ES for our
demonstration functions there are analytic approaches (note close agreement between CMA-ES and
“Theory” in Figures 9, 10, 12, 13 and 16) which might have been used. Nonetheless these functions
add further demonstrations of the power of evolutionary computation to optimise data embedded
within existing programs. Sections 5 and 7 used CMA-ES to automatically adapt 1024 or 512 float
constants, giving rise to cbrt and 1/sqrt, which do not currently exist in the C run time library
(although cbrt is available in C++). Whilst in Section 6 our technique is demonstrated evolving data
for log2. By considering 3√x , log2 and 1/sqrt(x), we have shown our framework can be adapted

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

https://en.wikipedia.org/wiki/Single-precision_floating-point_format

7:22 W. B. Langdon and O. Krauss

to provide new mathematics double functions [36],[27],[32] where there is an objective function,
e.g. the inverse operation.7 We can view these as mostly a demonstration of what evolution can do
and from a practical point of view perhaps it will prove most useful for porting existing functions
to different hardware, possibly lacking direct mathematics support. For Newton-Raphson to be
attractive, the function would have to have be sufficiently non-linear and have a fast objective
measure. Perhaps 5

√, 7
√, 11

√ ... (with objective functions x5, x7, x11...). The framework could be adapted
to the trigonometric mathematics functions again by using the inverse function as the objective
but to be useful the objective must either be computationally cheap or readily available (ideally
both). However Taylor series expansion may be a practical alternative to Newton-Raphson. Also
the availability of small (e.g. 4K bytes) of fast memory, e.g. within core, might suit this approach.

In very limited computing environments (e.g. tiny, ≈1 millimetre, processors such as smart dust,
mote computing) it may be impossible to host GLIBC and there may be very limited electrical
power for computation. There could still be realtime requirements, (e.g. track object, decide if it is
near, close lens cap only if need be) which require a limited mathematics library. This limitation
could take two forms. 1) Restrictions on inputs. E.g. angles are limited to −15◦ to +15◦ by the
camera aperture. 2) Only a few combinations of functions are needed. This approach might be
able to create an efficient implementation of such novel composite functions of no more than
the required accuracy [12]. The inherent flexibility of software might mean that a novel bespoke
software approach might be competitive with a custom hardware integrated circuit (ASIC) approach
and still fit in a small read only memory (e.g. 4K bytes). If read only memory is very limited the
tables might be reduced from 4K bytes to 256 bytes by using an 8 bit index into the table of start
values (rather than 9 bits) and storing start values with 8 bit precision (rather than in 32 bit floats).

Previously [38] we have demonstrated using Genetic Improvement to adapt 50 000 parameters
to new scientific knowledge may be possible but time consuming. Section 5 showed in less than
five minutes evolution can adapt more than a thousand continuous values, whereas Sections 6.3.3
and 7.3.4 showed in a few seconds it can adapt several hundred continuous values.

Although testing cannot show the absence of bugs [16], software testing is indispensable for all
software development [2, page 1979]. Testing is the de facto way of gaining confidence in software.
It is notable that the the GNU C runtime library release kit comes with copious tests. The very
directed testing in the fitness function hits the “edge cases”. That is, in addition to the mid point, it
is precisely set to exactly test the extremities of each bin. After running CMA-ES, we have also
used extensive testing to show that in normal operation (i.e. given a regular number) the functions
return the correct double precision values. Excluding faults in the underlying hardware, we can be
reasonably confident of our testing because once we exclude errors and special cases (e.g. negative
inputs, inf and denormalised numbers), e_sqrt.c is just one linear sequence of instructions, which
we have exercised thousands of times. As the functions of interest are well behaved in the range
0.5 to 2.0 and part of our testing covers the extrema of the individual bins as well as internal points,
we can feel confident in the use of Newton-Raphson in normal operation. However, as mentioned
above, e.g. in Section 6.2, we would want to make changes to the existing crude error reporting
mechanism if the GI functions were used in the GNU C library.
The existing testing covers error conditions, inf and some denormalised numbers. However,

as these are handled by separate code branches, before the GI code was used in a public general
purpose library, the owners of the library would perhaps want to assure themselves that these side
branches were also sufficiently tested. In particular since, the IEEE 754 double precision representa-
tion includes two types of infinity (positive and negative), many NAN and denormalised values, the

7It may be that the framework is sufficiently robust, that the task of evolving another function e.g. 5√x , (possibly without
the requirement to normalise the double precision numbers) might be posed as an exercise for talented students.

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

Genetic Improvement of Data for Maths Functions 7:23

Table 2. Results

Start Evolved description accuracy search time
sqrt → cbrt() 3√x Section 5 double precision, i.e. ≤6.7 10−16 270 seconds
sqrt → log2() log2 x Section 6 double precision, i.e. ≤2.2 10−16 6 seconds
sqrt → invsqrt() x−1/2 Section 7 double precision, i.e. ≤2.2 10−16 6 seconds

existing test cases for them ought to be extended. In particular since denormalised values are dealt
with by recursive code, they should be tested more intensively. This is the only recursive code in
e_sqrt.c and so, particularly in novel implementations, testing might uncover unexpected stack in-
teractions, unrelated to the mathematical function itself. Additionally, e.g. following Markstein [43],
it may be feasible to verify our evolved functions.

We have used optimisation (in the form of CMA-ES) on the data and traditional manual methods
to change the source code. Future work might combine GI optimisation of data and source code.
Several goals, even multi-objective simultaneous goals, might be considered. For example, run time
and energy efficiency, or (particularly in mobile or ultra low resource systems) tradeoffs between
speed, memory and code size. We have internally normalised double to the range 1.0 to 2.0. Future
work could consider other internal normalisation ranges, e.g. 0.5 to 4.0.

9 CONCLUSIONS
This work hints, that in a world addicted to software, both automated data maintenance and data
transplantation could be essential new areas for optimisation research.
This approach combines minimal manual code changes (Sections 5.1, 6.2 and 7.2) and search.

Starting from existing open source code, in a few seconds optimisation was able to find 512/1024
values to transform part of the GNU C library into a range of widely used mathematical functions.
In all cases the GI functions produced a correct double precision answer (see Table 2).

ACKNOWLEDGMENTS
My thanks to Justyna Petke (UCL) and to our EuroGP [38] and GI @ GECCO 2019 [36] anonymous
reviewers. Funded by EPSRC grant EP/M025853/1.

Code. Unix scripts and source code (including CMA-ES) are available via http://www.cs.ucl.ac.uk/
staff/W.Langdon/ftp/gp-code/gi_cbrt.tar.gz and via a GitHub replication package https://github.
com/oliver-krauss/Replication_GI_Division_Free_Division or doi:10.5281/zenodo.3755346

REFERENCES
[1] B. J. Alexander and M. J. Gratton. 2009. Constructing an Optimisation Phase Using Grammatical Evolution. In 2009

IEEE Congress on Evolutionary Computation, Andy Tyrrell (Ed.). IEEE Computational Intelligence Society, IEEE Press,
Trondheim, Norway, 1209–1216. http://dx.doi.org/10.1109/CEC.2009.4983083

[2] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John A. Clark, Myra B. Cohen,Wolfgang Grieskamp, Mark Harman,
Mary Jean Harrold, and Phil McMinn. 2013. An orchestrated survey of methodologies for automated software test case
generation. Journal of Systems and Software 86, 8 (August 2013), 1978–2001. http://dx.doi.org/10.1016/j.jss.2013.02.061

[3] Mirela Andronescu, Anne Condon, Holger H. Hoos, David H. Mathews, and Kevin P. Murphy. 2007. Efficient parameter
estimation for RNA secondary structure prediction. Bioinformatics 23, 13 (2007), i19–i28. http://dx.doi.org/10.1093/
bioinformatics/btm223

[4] Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke. 2015. Automated Software Transplanta-
tion. In International Symposium on Software Testing and Analysis, ISSTA 2015, Tao Xie and Michal Young (Eds.). ACM,
Baltimore, Maryland, USA, 257–269. http://dx.doi.org/10.1145/2771783.2771796 ACM SIGSOFT Distinguished Paper
Award.

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

https://epsrc.ukri.org/
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/M025853/1
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gi_cbrt.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gi_cbrt.tar.gz
https://github.com/oliver-krauss/Replication_GI_Division_Free_Division
https://github.com/oliver-krauss/Replication_GI_Division_Free_Division
http://dx.doi.org://doi:10.5281/zenodo.3755346
http://dx.doi.org/10.1109/CEC.2009.4983083
http://dx.doi.org/10.1016/j.jss.2013.02.061
http://dx.doi.org/10.1093/bioinformatics/btm223
http://dx.doi.org/10.1093/bioinformatics/btm223
http://dx.doi.org/10.1145/2771783.2771796

7:24 W. B. Langdon and O. Krauss

[5] Mahmoud A. Bokhari, Bobby R. Bruce, Brad Alexander, and Markus Wagner. 2017. Deep Parameter Optimisation on
Android Smartphones for Energy Minimisation - A Tale of Woe and a Proof-of-Concept. In GI-2017, Justyna Petke,
David R. White, W. B. Langdon, and Westley Weimer (Eds.). ACM, Berlin, 1501–1508. http://dx.doi.org/10.1145/
3067695.3082519

[6] Bobby R. Bruce. 2015. Energy Optimisation via Genetic Improvement A SBSE technique for a new era in Software
Development. In Genetic Improvement 2015 Workshop, William B. Langdon, Justyna Petke, and David R. White (Eds.).
ACM, Madrid, 819–820. http://dx.doi.org/10.1145/2739482.2768420

[7] Bobby R. Bruce. 2018. The Blind Software Engineer: Improving the Non-Functional Properties of Software by Means of
Genetic Improvement. Ph.D. Dissertation. Computer Science, University College, London, UK. http://www.cs.ucl.ac.
uk/staff/W.Langdon/ftp/papers/bruce_bobby_r_thesis.pdf

[8] Bobby R. Bruce, Jonathan M. Aitken, and Justyna Petke. 2016. Deep Parameter Optimisation for Face Detection Using
the Viola-Jones Algorithm in OpenCV. In Proceedings of the 8th International Symposium on Search Based Software
Engineering, SSBSE 2016 (LNCS, Vol. 9962), Federica Sarro and Kalyanmoy Deb (Eds.). Springer, Raleigh, North Carolina,
USA, 238–243. http://dx.doi.org/10.1007/978-3-319-47106-8_18

[9] Nathan Burles, Edward Bowles, Alexander E. I. Brownlee, Zoltan A. Kocsis, Jerry Swan, and Nadarajen Veerapen.
2015. Object-Oriented Genetic Improvement for Improved Energy Consumption in Google Guava. In SSBSE (LNCS,
Vol. 9275), Yvan Labiche and Marcio Barros (Eds.). Springer, Bergamo, Italy, 255–261. http://dx.doi.org/10.1007/978-3-
319-22183-0_20

[10] Simon Butler. 2015. Analysing Java Identifier Names. Ph.D. Dissertation. Open University, UK. http://oro.open.ac.uk/
46653/

[11] L. Cao, H. Sihler, U. Platt, and E. Gutheil. 2014. Numerical analysis of the chemical kinetic mechanisms of ozone
depletion and halogen release in the polar troposphere. Atmospheric Chemistry and Physics 14, 7 (2014), 3771–3787.
http://dx.doi.org/10.5194/acp-14-3771-2014

[12] Milan Ceska, Jiri Matyas, Vojtech Mrazek, Lukas Sekanina, Zdenek Vasicek, and Tomas Vojnar. 2017. Approximating
Complex Arithmetic Circuits with Formal Error Guarantees: 32-bit Multipliers Accomplished. In Proceedings of 36th
IEEE/ACM International Conference On Computer Aided Design (ICCAD), Iris Bahar and Sri Parameswaran (Eds.). Institute
of Electrical and Electronics Engineers, Irvine, CA, USA, 416–423. http://dx.doi.org/10.1109/ICCAD.2017.8203807

[13] David Peter Alfred Corney. 2002. Intelligent Analysis of Small Data Sets for Food Design. Ph.D. Dissertation. University
College, London. https://discovery.ucl.ac.uk/id/eprint/10099629

[14] Fabricio Gomes de Freitas and Jerffeson Teixeira de Souza. 2011. Ten Years of Search Based Software Engineering: A
Bibliometric Analysis. In Third International Symposium on Search based Software Engineering (SSBSE 2011) (LNCS,
Vol. 6956), Myra B. Cohen and Mel O Cinneide (Eds.). Springer, Szeged, Hungary, 18–32. http://dx.doi.org/10.1007/978-
3-642-23716-4_5

[15] Sayed Mehdi Hejazi Dehaghani and Nafiseh Hajrahimi. 2013. Which Factors Affect Software Projects Maintenance
Cost More? Acta Informatica Medica 21, 1 (Mar 2013), 63–66. http://dx.doi.org/10.5455/AIM.2012.21.63-66

[16] E. W. Dijkstra. 1969. “Testing shows the presence, not the absence of bugs.” in Software Engineering Techniques: Report of a
conference sponsored by the NATO Science Committee (Robert M. McClure, 2001 ed.). NATO, Scientific Affairs Division,
Brussels, Rome, Italy, Chapter 3.1, 16. http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF

[17] Nikolaus Hansen and Andreas Ostermeier. 2001. Completely Derandomized Self-Adaptation in Evolution Strategies.
Evolutionary Computation 9, 2 (Summer 2001), 159–195. http://dx.doi.org/10.1162/106365601750190398

[18] Mark Harman, Yue Jia, and William B. Langdon. 2014. Babel Pidgin: SBSE Can Grow and Graft Entirely New
Functionality into a Real World System. In Proceedings of the 6th International Symposium, on Search-Based Software
Engineering, SSBSE 2014 (LNCS, Vol. 8636), Claire Le Goues and Shin Yoo (Eds.). Springer, Fortaleza, Brazil, 247–252.
http://dx.doi.org/10.1007/978-3-319-09940-8_20 Winner SSBSE 2014 Challange Track.

[19] Mark Harman and Bryan F. Jones. 2001. Search Based Software Engineering. Information and Software Technology 43,
14 (Dec. 2001), 833–839. http://dx.doi.org/10.1016/S0950-5849(01)00189-6

[20] Yue Jia, Mark Harman, William B. Langdon, and Alexandru Marginean. 2015. Grow and Serve: Growing Django
Citation Services Using SBSE. In SSBSE 2015 Challenge Track (LNCS, Vol. 9275), Shin Yoo and Leandro Minku (Eds.).
Springer, Bergamo, Italy, 269–275. http://dx.doi.org/10.1007/978-3-319-22183-0_22

[21] John R. Koza, Forrest H Bennett III, Jason Lohn, Frank Dunlap, Martin A. Keane, and David Andre. 1997. Automated
Synthesis of Computational Circuits Using Genetic Programming. In Proceedings of the 1997 IEEE International
Conference on Evolutionary Computation. IEEE Press, Indianapolis, 447–452. http://dx.doi.org/10.1109/ICEC.1997.592353

[22] Oliver Krauss and W. B. Langdon. 2020. Automatically Evolving Lookup Tables for Function Approximation. In EuroGP
2020: Proceedings of the 23rd European Conference on Genetic Programming (LNCS, Vol. 12101), Ting Hu, Nuno Lourenco,
and Eric Medvet (Eds.). Springer Verlag, Seville, Spain, 84–100. http://dx.doi.org/10.1007/978-3-030-44094-7_6

[23] W. B. Langdon. 2012. Genetic Improvement of Programs. In 18th International Conference on Soft Computing, MENDEL
2012 (2nd ed.), Radomil Matousek (Ed.). Brno University of Technology, Brno, Czech Republic. http://www.cs.ucl.ac.

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

http://dx.doi.org/10.1145/3067695.3082519
http://dx.doi.org/10.1145/3067695.3082519
http://dx.doi.org/10.1145/2739482.2768420
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/bruce_bobby_r_thesis.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/bruce_bobby_r_thesis.pdf
http://dx.doi.org/10.1007/978-3-319-47106-8_18
http://dx.doi.org/10.1007/978-3-319-22183-0_20
http://dx.doi.org/10.1007/978-3-319-22183-0_20
http://oro.open.ac.uk/46653/
http://oro.open.ac.uk/46653/
http://dx.doi.org/10.5194/acp-14-3771-2014
http://dx.doi.org/10.1109/ICCAD.2017.8203807
https://discovery.ucl.ac.uk/id/eprint/10099629
http://dx.doi.org/10.1007/978-3-642-23716-4_5
http://dx.doi.org/10.1007/978-3-642-23716-4_5
http://dx.doi.org/10.5455/AIM.2012.21.63-66
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1007/978-3-319-09940-8_20
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://dx.doi.org/10.1007/978-3-319-22183-0_22
http://dx.doi.org/10.1109/ICEC.1997.592353
http://dx.doi.org/10.1007/978-3-030-44094-7_6
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2012_mendel.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2012_mendel.pdf

Genetic Improvement of Data for Maths Functions 7:25

uk/staff/W.Langdon/ftp/papers/Langdon_2012_mendel.pdf Invited keynote.
[24] William B. Langdon. 2014. Genetic Improvement of Programs. In 16th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing (SYNASC 2014), Franz Winkler, Viorel Negru, Tetsuo Ida, Tudor Jebelean, Dana
Petcu, Stephen Watt, and Daniela Zaharie (Eds.). IEEE, Timisoara, 14–19. http://dx.doi.org/10.1109/SYNASC.2014.10
Keynote.

[25] W. B. Langdon. 2015. Genetic Improvement of Software for Multiple Objectives. In SSBSE (LNCS, Vol. 9275), Yvan
Labiche and Marcio Barros (Eds.). Springer, Bergamo, Italy, 12–28. http://dx.doi.org/10.1007/978-3-319-22183-0_2
Invited keynote.

[26] William B. Langdon. 2015. Genetically Improved Software. In Handbook of Genetic Programming Applications, Amir H.
Gandomi, Amir H. Alavi, and Conor Ryan (Eds.). Springer, Chapter 8, 181–220. http://dx.doi.org/10.1007/978-3-319-
20883-1_8

[27] W. B. Langdon. 2018. Evolving Square Root into Binary Logarithm. Technical Report RN/18/05. University College,
London, London, UK. http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_18_05.pdf

[28] W. B. Langdon. 2019. Genetic Improvement of Data gives double precision invsqrt. In 7th edition of GI @ GECCO
2019, Brad Alexander, Saemundur O. Haraldsson, Markus Wagner, and John R. Woodward (Eds.). ACM, Prague, Czech
Republic, 1709–1714. http://dx.doi.org/10.1145/3319619.3326800

[29] W. B. Langdon and M. Harman. 2010. Evolving a CUDA Kernel from an nVidia Template. In 2010 IEEE World Congress
on Computational Intelligence, Pilar Sobrevilla (Ed.). IEEE, Barcelona, 2376–2383. http://dx.doi.org/10.1109/CEC.2010.
5585922

[30] William B. Langdon and Mark Harman. 2015. Grow and Graft a better CUDA pknotsRG for RNA pseudoknot free
energy calculation. In Genetic Improvement 2015 Workshop, William B. Langdon, Justyna Petke, and David R. White
(Eds.). ACM, Madrid, 805–810. http://dx.doi.org/10.1145/2739482.2768418

[31] William B. Langdon and Mark Harman. 2015. Optimising Existing Software with Genetic Programming. IEEE
Transactions on Evolutionary Computation 19, 1 (Feb. 2015), 118–135. http://dx.doi.org/10.1109/TEVC.2013.2281544

[32] William B. Langdon and Oliver Krauss. 2020. Evolving sqrt into 1/x via Software Data Maintenance. In 9th edition of
GI @ GECCO 2020, Brad Alexander, Alexander (Sandy) Brownlee, Saemundur O. Haraldsson, Markus Wagner, and
John R. Woodward (Eds.). ACM, Internet, 1928–1936. http://dx.doi.org/10.1145/3377929.3398110

[33] William B. Langdon, Brian Yee Hong Lam,MarcModat, Justyna Petke, andMark Harman. 2017. Genetic Improvement of
GPU Software. Genetic Programming and Evolvable Machines 18, 1 (March 2017), 5–44. http://dx.doi.org/10.1007/s10710-
016-9273-9

[34] William B. Langdon and Justyna Petke. 2015. Software is Not Fragile. In Complex Systems Digital Campus E-conference,
CS-DC’15 (Proceedings in Complexity), Pierre Parrend, Paul Bourgine, and Pierre Collet (Eds.). Springer, 203–211.
http://dx.doi.org/10.1007/978-3-319-45901-1_24 Invited talk.

[35] William B. Langdon and Justyna Petke. 2018. Evolving Better Software Parameters. In SSBSE 2018 Hot off the Press
Track (LNCS, Vol. 11036), Thelma Elita Colanzi and Phil McMinn (Eds.). Springer, Montpellier, France, 363–369.
http://dx.doi.org/10.1007/978-3-319-99241-9_22

[36] W. B. Langdon and Justyna Petke. 2019. Genetic Improvement of Data gives Binary Logarithm from sqrt. In GECCO
’19: Proceedings of the Genetic and Evolutionary Computation Conference Companion, Richard Allmendinger et al. (Eds.).
ACM, Prague, Czech Republic, 413–414. http://dx.doi.org/10.1145/3319619.3321954

[37] William B. Langdon, Justyna Petke, and Bobby R. Bruce. 2016. Optimising Quantisation Noise in Energy Measurement.
In 14th International Conference on Parallel Problem Solving from Nature (LNCS, Vol. 9921), Julia Handl, Emma Hart,
Peter R. Lewis, Manuel Lopez-Ibanez, Gabriela Ochoa, and Ben Paechter (Eds.). Springer, Edinburgh, 249–259. http:
//dx.doi.org/10.1007/978-3-319-45823-6_23

[38] William B. Langdon, Justyna Petke, and Ronny Lorenz. 2018. Evolving better RNAfold structure prediction. In EuroGP
2018: Proceedings of the 21st European Conference on Genetic Programming (LNCS, Vol. 10781), Mauro Castelli, Lukas
Sekanina, and Mengjie Zhang (Eds.). Springer Verlag, Parma, Italy, 220–236. http://dx.doi.org/10.1007/978-3-319-
77553-1_14

[39] Ronny Lorenz, Stephan H. Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph Flamm, Peter F.
Stadler, and Ivo L. Hofacker. 2011. ViennaRNA Package 2.0. Algorithms for Molecular Biology 6, 1 (2011). http:
//dx.doi.org/10.1186/1748-7188-6-26

[40] Jie Lu, Hongyang Jia, Naveen Verma, and Niraj K. Jha. 2018. Genetic Programming for Energy-Efficient and Energy-
Scalable Approximate Feature Computation in Embedded Inference Systems. IEEE Trans. Comput. 67, 2 (Feb. 2018),
222–236. http://dx.doi.org/10.1109/TC.2017.2738642

[41] Yanxin Lu, Swarat Chaudhuri, Chris Jermaine, and David Melski. 2018. Program Splicing. In 40th International
Conference on Software Engineering, Marsha Chechik and Mark Harman (Eds.). ACM, Gothenburg, Sweden, 338–349.
http://dx.doi.org/10.1145/3180155.3180190

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2012_mendel.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2012_mendel.pdf
http://dx.doi.org/10.1109/SYNASC.2014.10
http://dx.doi.org/10.1007/978-3-319-22183-0_2
http://dx.doi.org/10.1007/978-3-319-20883-1_8
http://dx.doi.org/10.1007/978-3-319-20883-1_8
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_18_05.pdf
http://dx.doi.org/10.1145/3319619.3326800
http://dx.doi.org/10.1109/CEC.2010.5585922
http://dx.doi.org/10.1109/CEC.2010.5585922
http://dx.doi.org/10.1145/2739482.2768418
http://dx.doi.org/10.1109/TEVC.2013.2281544
http://dx.doi.org/10.1145/3377929.3398110
http://dx.doi.org/10.1007/s10710-016-9273-9
http://dx.doi.org/10.1007/s10710-016-9273-9
http://dx.doi.org/10.1007/978-3-319-45901-1_24
http://dx.doi.org/10.1007/978-3-319-99241-9_22
http://dx.doi.org/10.1145/3319619.3321954
http://dx.doi.org/10.1007/978-3-319-45823-6_23
http://dx.doi.org/10.1007/978-3-319-45823-6_23
http://dx.doi.org/10.1007/978-3-319-77553-1_14
http://dx.doi.org/10.1007/978-3-319-77553-1_14
http://dx.doi.org/10.1186/1748-7188-6-26
http://dx.doi.org/10.1186/1748-7188-6-26
http://dx.doi.org/10.1109/TC.2017.2738642
http://dx.doi.org/10.1145/3180155.3180190

7:26 W. B. Langdon and O. Krauss

[42] Alexandru Marginean, Earl T. Barr, Mark Harman, and Yue Jia. 2015. Automated Transplantation of Call Graph and
Layout Features into Kate. In SSBSE (LNCS, Vol. 9275), Yvan Labiche and Marcio Barros (Eds.). Springer, Bergamo, Italy,
262–268. http://dx.doi.org/10.1007/978-3-319-22183-0_21

[43] P. W. Markstein. 1990. Computation of elementary functions on the IBM RISC System/6000 processor. IBM Journal of
Research and Development 34, 1 (Jan 1990), 111–119. http://dx.doi.org/10.1147/rd.341.0111

[44] Petr Marounek. 2012. Simplified approach to effort estimation in software maintenance. Journal of Systems Integration
3, 3 (2012), 51–63. http://www.si-journal.org/index.php/JSI/article/view/123/99

[45] Roger J. Martin and Wilma M. Osborne. 1983. Guidance on software maintenance. NBS Special Publication 500-106.
National Bureau of Standards, Department of Commerce, Washington DC, USA. http://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nbsspecialpublication500-106.pdf

[46] Michael Mohan and Des Greer. 2018. A survey of search-based refactoring for software maintenance. Journal of
Software Engineering Research and Development 6, 3 (7 February 2018). http://dx.doi.org/10.1186/s40411-018-0046-4

[47] Michael Orlov and Moshe Sipper. 2011. Flight of the FINCH through the Java Wilderness. IEEE Transactions on
Evolutionary Computation 15, 2 (April 2011), 166–182. http://dx.doi.org/10.1109/TEVC.2010.2052622

[48] Justyna Petke. 2015. Constraints: The Future of Combinatorial Interaction Testing. In 2015 IEEE/ACM 8th International
Workshop on Search-Based Software Testing. Florence, 17–18. http://dx.doi.org/doi:10.1109/SBST.2015.11

[49] Justyna Petke. 2017. Preface to the Special Issue on Genetic Improvement. Genetic Programming and Evolvable Machines
18, 1 (March 2017), 3–4. http://dx.doi.org/10.1007/s10710-016-9280-x Editorial Note.

[50] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon, David R. White, and John R. Woodward.
2018. Genetic Improvement of Software: a Comprehensive Survey. IEEE Transactions on Evolutionary Computation 22,
3 (June 2018), 415–432. http://dx.doi.org/doi:10.1109/TEVC.2017.2693219

[51] Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer. 2014. Using Genetic Improvement and Code
Transplants to Specialise a C++ Program to a Problem Class. In 17th European Conference on Genetic Programming
(LNCS, Vol. 8599), Miguel Nicolau, Krzysztof Krawiec, Malcolm I. Heywood, Mauro Castelli, Pablo Garcia-Sanchez, Juan J.
Merelo, Victor M. Rivas Santos, and Kevin Sim (Eds.). Springer, Granada, Spain, 137–149. http://dx.doi.org/10.1007/978-
3-662-44303-3_12

[52] Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and Westley Weimer. 2014. Post-compiler Software
Optimization for Reducing Energy. In Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS’14. ACM, Salt Lake City, Utah, USA, 639–652. http://dx.doi.
org/10.1145/2541940.2541980

[53] Eric Schulte, Stephanie Forrest, and Westley Weimer. 2010. Automated Program Repair through the Evolution of
Assembly Code. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering. ACM,
Antwerp, 313–316. http://dx.doi.org/10.1145/1858996.1859059

[54] Eric Schulte, Westley Weimer, and Stephanie Forrest. 2015. Repairing COTS Router Firmware without Access to Source
Code or Test Suites: A Case Study in Evolutionary Software Repair. In Genetic Improvement 2015 Workshop, William B.
Langdon, Justyna Petke, and David R. White (Eds.). ACM, Madrid, 847–854. http://dx.doi.org/10.1145/2739482.2768427
Best Paper.

[55] Madura A Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus Wagner, and Yuval Yarom. 2019. Rosita:
Towards Automatic Elimination of Power-Analysis Leakage in Ciphers. arViv. arXiv:1912.05183 [cs.CR] https:
//arxiv.org/abs/1912.05183

[56] Jeongju Sohn, Seongmin Lee, and Shin Yoo. 2016. Amortised Deep Parameter Optimisation of GPGPU Work Group
Size for OpenCV. In Proceedings of the 8th International Symposium on Search Based Software Engineering, SSBSE
2016 (LNCS, Vol. 9962), Federica Sarro and Kalyanmoy Deb (Eds.). Springer, Raleigh, North Carolina, USA, 211–217.
http://dx.doi.org/10.1007/978-3-319-47106-8_14

[57] Hideyuki Takagi. 2001. Interactive Evolutionary Computation: Fusion of the Capabilities of EC Optimization and
Human Evaluation. Proc. IEEE 89, 9 (Sept. 2001), 1275–1296. http://dx.doi.org/10.1109/5.949485 Invited Paper.

[58] Roberto Tiella and Mariano Ceccato. 2017. Automatic Generation of Opaque Constants Based on the K-Clique
Problem for Resilient Data Obfuscation. In 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, Klagenfurt, Austria, 182–192. http://dx.doi.org/10.1109/SANER.2017.7884620

[59] Zdenek Vasicek and Vojtech Mrazek. 2017. Trading between quality and non-functional properties of median filter in
embedded systems. Genetic Programming and Evolvable Machines 18, 1 (March 2017), 45–82. http://dx.doi.org/10.
1007/s10710-016-9275-7

[60] David R. White. 2017. GI in No Time. In GI-2017, Justyna Petke, David R. White, W. B. Langdon, and Westley Weimer
(Eds.). ACM, Berlin, 1549–1550. http://dx.doi.org/doi:10.1145/3067695.3082515

[61] David R. White, Andrea Arcuri, and John A. Clark. 2011. Evolutionary Improvement of Programs. IEEE Transactions
on Evolutionary Computation 15, 4 (Aug. 2011), 515–538. http://dx.doi.org/10.1109/TEVC.2010.2083669

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

http://dx.doi.org/10.1007/978-3-319-22183-0_21
http://dx.doi.org/10.1147/rd.341.0111
http://www.si-journal.org/index.php/JSI/article/view/123/99
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-106.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-106.pdf
http://dx.doi.org/10.1186/s40411-018-0046-4
http://dx.doi.org/10.1109/TEVC.2010.2052622
http://dx.doi.org/doi:10.1109/SBST.2015.11
http://dx.doi.org/10.1007/s10710-016-9280-x
http://dx.doi.org/doi:10.1109/TEVC.2017.2693219
http://dx.doi.org/10.1007/978-3-662-44303-3_12
http://dx.doi.org/10.1007/978-3-662-44303-3_12
http://dx.doi.org/10.1145/2541940.2541980
http://dx.doi.org/10.1145/2541940.2541980
http://dx.doi.org/10.1145/1858996.1859059
http://dx.doi.org/10.1145/2739482.2768427
https://arxiv.org/abs/1912.05183
https://arxiv.org/abs/1912.05183
https://arxiv.org/abs/1912.05183
http://dx.doi.org/10.1007/978-3-319-47106-8_14
http://dx.doi.org/10.1109/5.949485
http://dx.doi.org/10.1109/SANER.2017.7884620
http://dx.doi.org/10.1007/s10710-016-9275-7
http://dx.doi.org/10.1007/s10710-016-9275-7
http://dx.doi.org/doi:10.1145/3067695.3082515
http://dx.doi.org/10.1109/TEVC.2010.2083669

Genetic Improvement of Data for Maths Functions 7:27

[62] David R. White, John Clark, Jeremy Jacob, and Simon M. Poulding. 2008. Searching for resource-efficient programs:
low-power pseudorandom number generators. In GECCO ’08: Proceedings of the 10th annual conference on Genetic and
evolutionary computation, Maarten Keijzer et al. (Eds.). ACM, Atlanta, GA, USA, 1775–1782. http://dx.doi.org/10.1145/
1389095.1389437

[63] David R. White, Leonid Joffe, Edward Bowles, and Jerry Swan. 2017. Deep Parameter Tuning of Concurrent Divide
and Conquer Algorithms in Akka. In 20th European Conference on the Applications of Evolutionary Computation
(Lecture Notes in Computer Science, Vol. 10200), Giovanni Squillero and Kevin Sim (Eds.). Springer, Amsterdam, 35–48.
http://dx.doi.org/10.1007/978-3-319-55792-2_3

[64] Michal Wiglasz and Lukas Sekanina. 2018. Cooperative Coevolutionary Approximation in HOG-based Human
Detection Embedded System. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, Bangalore,
India, 1313–1320. http://dx.doi.org/10.1109/SSCI.2018.8628910

[65] John R. Woodward, Colin G. Johnson, and Alexander E. I. Brownlee. 2016. Connecting Automatic Parameter Tuning,
Genetic Programming as a Hyper-heuristic, and Genetic Improvement Programming. In GECCO ’16 Companion:
Proceedings of the Companion Publication of the 2016 Annual Conference on Genetic and Evolutionary Computation.
ACM, Denver, Colorado, USA, 1357–1358. http://dx.doi.org/10.1145/2908961.2931728

[66] Fan Wu. 2017. Mutation-Based Genetic Improvement of Software. Ph.D. Dissertation. Department of Computer Science,
University College, London, UK. http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Thesis_Fan_v2.1.pdf

[67] Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and Jens Krinke. 2015. Deep Parameter Optimisation. In GECCO
’15: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, Sara Silva et al. (Eds.). ACM,
Madrid, 1375–1382. http://dx.doi.org/10.1145/2739480.2754648

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

http://dx.doi.org/10.1145/1389095.1389437
http://dx.doi.org/10.1145/1389095.1389437
http://dx.doi.org/10.1007/978-3-319-55792-2_3
http://dx.doi.org/10.1109/SSCI.2018.8628910
http://dx.doi.org/10.1145/2908961.2931728
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Thesis_Fan_v2.1.pdf
http://dx.doi.org/10.1145/2739480.2754648

7:28 W. B. Langdon and O. Krauss

A ORIGINAL CODE E_SQRT.C, FOR GLIBC 2.27 POWERPC SQRT
__builtin_fma() is a C compiler builtin library routine for efficiently doing multiply and add
operations together.

fesetenv_register() and fegetenv_register() are system dependent macros to set and get
the current floating-point environment.

relax_fenv_state() is a system dependent macro to set 1) the rounding mode to “round to
nearest”; 2) the processor into IEEE mode; and 3) prevent exceptions from being raised for inexact
results.

__feraiseexcept() is a system dependent macro which is part of the GNU C library’s exception
handling. (Here dealing with attempts to take the square root of a negative double.)

f_wash() is a system dependent macro to 1) sets the appropriate Floating-point Status and
Control Register bits for its parameter, 2) converts signaling NaN (sNaN) to the corresponding
quiet NaN (qNaN), and 3) otherwise passes its parameter through unchanged (in particular, -0 and
+0 stay as they were).

static const double almost_half = 0.5000000000000001; /* 0.5 + 2^-53 */
static const ieee_float_shape_type a_nan = {.word = 0x7fc00000 };
static const ieee_float_shape_type a_inf = {.word = 0x7f800000 };
static const float two108 = 3.245185536584267269e+32;
static const float twom54 = 5.551115123125782702e-17;
extern const float __t_sqrt[1024];

/* The method is based on a description in
Computation of elementary functions on the IBM RISC System/6000 processor,
P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
Basically, it consists of two interleaved Newton-Raphson approximations,
one to find the actual square root, and one to find its reciprocal
without the expense of a division operation. The tricky bit here
is the use of the POWER/PowerPC multiply-add operation to get the
required accuracy with high speed.

The argument reduction works by a combination of table lookup to
obtain the initial guesses, and some careful modification of the
generated guesses (which mostly runs on the integer unit, while the
Newton-Raphson is running on the FPU). */

double
__slow_ieee754_sqrt (double x)
{

const float inf = a_inf.value;
if (x > 0)
{
/* schedule the EXTRACT_WORDS to get separation between the store

and the load. */
ieee_double_shape_type ew_u;
ieee_double_shape_type iw_u;
ew_u.value = (x);
if (x != inf)

{

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

Genetic Improvement of Data for Maths Functions 7:29

/* Variables named starting with 's' exist in the
argument-reduced space, so that 2 > sx >= 0.5,
1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
Variables named ending with 'i' are integer versions of
floating-point values. */

double sx; /* The value of which we're trying to find the
square root. */
double sg, g; /* Guess of the square root of x. */
double sd, d; /* Difference between the square of the guess and x. */
double sy; /* Estimate of 1/2g (overestimated by 1ulp). */
double sy2; /* 2*sy */
double e; /* Difference between y*g and 1/2 (se = e * fsy). */
double shx; /* == sx * fsg */
double fsg; /* sg*fsg == g. */
fenv_t fe; /* Saved floating-point environment (stores rounding
mode and whether the inexact exception is
enabled). */
uint32_t xi0, xi1, sxi, fsgi;
const float *t_sqrt;

fe = fegetenv_register ();
/* complete the EXTRACT_WORDS (xi0,xi1,x) operation. */
xi0 = ew_u.parts.msw;
xi1 = ew_u.parts.lsw;
relax_fenv_state ();
sxi = (xi0 & 0x3fffffff) | 0x3fe00000;
/* schedule the INSERT_WORDS (sx, sxi, xi1) to get separation

between the store and the load. */
iw_u.parts.msw = sxi;
iw_u.parts.lsw = xi1;
t_sqrt = __t_sqrt + (xi0 >> (52 - 32 - 8 - 1) & 0x3fe);
sg = t_sqrt[0];
sy = t_sqrt[1];
/* complete the INSERT_WORDS (sx, sxi, xi1) operation. */
sx = iw_u.value;

/* Here we have three Newton-Raphson iterations each of a
division and a square root and the remainder of the
argument reduction, all interleaved. */

sd = -__builtin_fma (sg, sg, -sx);
fsgi = (xi0 + 0x40000000) >> 1 & 0x7ff00000;
sy2 = sy + sy;
sg = __builtin_fma (sy, sd, sg); /* 16-bit approximation to
sqrt(sx). */

/* schedule the INSERT_WORDS (fsg, fsgi, 0) to get separation
between the store and the load. */

INSERT_WORDS (fsg, fsgi, 0);

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

7:30 W. B. Langdon and O. Krauss

iw_u.parts.msw = fsgi;
iw_u.parts.lsw = (0);
e = -__builtin_fma (sy, sg, -almost_half);
sd = -__builtin_fma (sg, sg, -sx);
if ((xi0 & 0x7ff00000) == 0)
goto denorm;

sy = __builtin_fma (e, sy2, sy);
sg = __builtin_fma (sy, sd, sg); /* 32-bit approximation to
sqrt(sx). */
sy2 = sy + sy;
/* complete the INSERT_WORDS (fsg, fsgi, 0) operation. */
fsg = iw_u.value;
e = -__builtin_fma (sy, sg, -almost_half);
sd = -__builtin_fma (sg, sg, -sx);
sy = __builtin_fma (e, sy2, sy);
shx = sx * fsg;
sg = __builtin_fma (sy, sd, sg); /* 64-bit approximation to
sqrt(sx), but perhaps
rounded incorrectly. */
sy2 = sy + sy;
g = sg * fsg;
e = -__builtin_fma (sy, sg, -almost_half);
d = -__builtin_fma (g, sg, -shx);
sy = __builtin_fma (e, sy2, sy);
fesetenv_register (fe);
return __builtin_fma (sy, d, g);

denorm:
/* For denormalised numbers, we normalise, calculate the

square root, and return an adjusted result. */
fesetenv_register (fe);
return __slow_ieee754_sqrt (x * two108) * twom54;

}
}

else if (x < 0)
{
/* For some reason, some PowerPC32 processors don't implement

FE_INVALID_SQRT. */
#ifdef FE_INVALID_SQRT

__feraiseexcept (FE_INVALID_SQRT);

fenv_union_t u = { .fenv = fegetenv_register () };
if ((u.l & FE_INVALID) == 0)

#endif
__feraiseexcept (FE_INVALID);

x = a_nan.value;
}

return f_wash (x);
}

ACM Transactions on Evolutionary Learning and Optimization, , Vol. 1, No. 2, Article 7. Publication date: July 2021.

	Abstract
	1 New Functionality via Data Update
	2 Maintaining Numbers within Code
	3 GI Creating New Functionality with Data Changes
	4 Automated Parameter Tuning for Evolving New Functionality
	4.1 Newton-Raphson
	4.2 GNU C Library sqrt's use of Newton-Raphson

	5 Optimising Data to Generate Cube Root cbrt
	5.1 cbrt Manual Changes
	5.2 Automatic Changes to cbrt Data Table using CMA-ES
	5.3 Testing the Evolved cbrt Function

	6 log2
	6.1 Evolving log2 Data Table via CMA-ES
	6.2 log2 Manual Changes
	6.3 Evolving the log2 Data Table with CMA-ES
	6.4 Testing the Evolved log2 Function

	7 Quake and x-12
	7.1 Evolving invsqrt x-12
	7.2 invsqrt Manual Changes
	7.3 CMA-ES Evolves x-12 Data Table
	7.4 Testing the Evolved invsqrt
	7.5 Comparison with Quake
	7.6 Other uses of invsqrt

	8 Discussion
	9 Conclusions
	Acknowledgments
	References
	A Original code e_sqrt.c, for GLIBC 2.27 PowerPC sqrt

