
GECCO’2001, San Francisco, 7–11 July 2001, Morgan Kaufmann

Genetic Programming for Combining Classifiers

W. B. Langdon and B. F. Buxton
Computer Science, University College, London, Gower Street, London, WC1E 6BT, UK

{W.Langdon,B.Buxton}@cs.ucl.ac.uk
http://www.cs.ucl.ac.uk/staff/W.Langdon, /staff/B.Buxton

Tel: +44 (0) 20 7679 4436, Fax: +44 (0) 20 7387 1397

Abstract

Genetic programming (GP) can automat-
ically fuse given classifiers to produce a
combined classifier whose Receiver Operat-
ing Characteristics (ROC) are better than
[Scott et al., 1998b]’s “Maximum Realisable
Receiver Operating Characteristics” (MR-
ROC). I.e. better than their convex hull.
This is demonstrated on artificial, medical
and satellite image processing bench marks.

1 INTRODUCTION

[Scott et al., 1998b] has previously suggested the
“Maximum Realisable Receiver Operating Character-
istics” for a combination of classifiers is the convex
hull of their individual ROCs. However the convex
hull is not always optimal [Yusoff et al., 1998]. We
show, on the problems used by [Scott et al., 1998b],
that genetic programming can evolve a combination
of classifiers whose ROC are better than the convex
hull of the supplied classifier’s ROCs.

The next section gives the back ground to data fusion,
Section 3 summarises Scott’s work, his three bench
marks are described in Section 4. The genetic pro-
gramming system and its results are given in Sections 5
and 6. Finally we finish in Sections 7 and 8 with a dis-
cussion and conclusions.

2 BACKGROUND

There is considerable interest in automatic means of
making large volumes of data intelligible to people.
Arguably traditional sciences such as Astronomy, Bi-
ology and Chemistry and branches of Industry and
Commerce can now generate data so cheaply that it
far outstrips human resources to make sense of it. In-
creasingly scientists and Industry are turning to their

computers not only to generate data but to try and
make sense of it. Indeed the new science of Bioin-
formatics has arisen from the need for computer sci-
entists and biologists to work together on tough data
rich problems such as rendering protein sequence data
useful. Of particular interest are the Pharmaceutical
(drug discovery) and food preparation industries.

The terms Data Mining and Knowledge Discovery are
commonly used for the problem of getting informa-
tion out of data. There are two common aims: 1) to
produce a summary of all or an interesting part of
the available data 2) to find interesting subsets of the
data buried within it. Of course these may overlap.
In addition to traditional techniques, a large range of
“intelligent” or “soft computing” techniques, such as
artificial neural networks, decision tables, fuzzy logic,
radial basis functions, inductive logic programming,
support vector machines, are being increasingly used.
Many of these techniques have been used in connec-
tion with evolutionary computation techniques such
as genetic algorithms and genetic programming.

We investigate ways of combining these and other clas-
sifiers with a view to producing one classifier which is
better than each. Firstly we need to decide how we
will measure the performance of a classifier. In prac-
tise when using any classifier a balance has to be cho-
sen between missing positive examples and generating
too many spurious alarms. Such a balancing act is not
easy. Especially in the medical field where failing to
detect a disease, such as cancer, has obvious conse-
quences but raising false alarms (false positives) also
has implications for patient well being. Receiver Op-
erating Characteristics (ROC) curves allow us to show
graphically the trade off each classifier makes between
its “false positive rate” (false alarms) and its “true
positive rate” [Swets et al., 2000]. (The true positive
rate is the fraction of all positive cases correctly clas-
sified. While the false positive rate is the fraction of
negative cases incorrectly classified as positive). Ex-

1

ample ROC curves are shown in Figures 1 and 3. We
treat each classifier as though it has a sensitivity pa-
rameter (e.g a threshold) which allows the classifier
to be tuned. At the lowest sensitivity level the clas-
sifier produces no false alarms but detects no positive
cases, i.e. the origin of the ROC. As the sensitivity
is increased, the classifier detects more positive exam-
ples but may also start generating false alarms (false
positives). Eventually the sensitivity may become so
high that the classifier always claims each case is pos-
itive. This corresponds to both true positive and false
positive rates being unity, i.e. the top right hand cor-
ner of the ROC. On average a classifier which simply
makes random guesses will have an operating point
somewhere on the line between the origin and 1,1 (see
dotted line in Figure 3).

Naturally we want our classifiers to have ROC curves
that come as close to a true positive rate of one and
simultaneously a false positive rate of zero. In Sec-
tion 5 we score each classifier by the area under its
ROC curve. An ideal classifier has an area of one. We
also require the given classifiers, not only to indicate
which class they think a data point belongs to, but
also how confident they are of this. Values near zero
indicate the classifier is not sure, possible because the
data point lies near the classifier’s decision boundary.

Arguably “Boosting” techniques combine classifiers
[Freund and Schapire, 1996]. However Boosting is nor-
mally applied to only one classifier and produces im-
provements by iteratively retraining it. Here we will
assume the classifiers we have are fixed, i.e. we do
not wish to retrain them. Similarly Boosting is nor-
mally applied by assuming the classifier is operated at
a single sensitivity (e.g a single threshold value). This
means on each retraining it produces a single pair of
false positive and true positive rates. Which is a single
point on the ROC rather than the curve we require.

3 “MAXIMUM REALISABLE” ROC

[Scott et al., 1998b] describes a procedure which will
create from two existing classifiers a new one whose
performance (in terms of its ROC) lies on a line con-
necting the performance of its two components. This
is done by choosing one or other of the classifiers at
random and using its result. E.g. if we need a classifier
whose false positive rate vs. its true positive rate lies
on a line half way between the ROC points of classi-
fiers A and B, then the Scott’s composite classifier will
randomly give the answer given by A half the time and
that given by B the other half, see Figure 1. (Of course
persuading patients to accept such a random diagnose
may not be straightforward).

Figure 1: Classifier C is created by choosing equally
between the output of classifier A and classifier B. Any
point in the shaded area can be created. The “Maxi-
mum Realisable ROC” is its convex hull (solid line).

The performance of the composite can be readily set
to any point along the line simply by varying the ratio
between the number of times one classifier is used rel-
ative to the other. Indeed this can be readily extended
to any number of classifiers to fill the space between
them. The better classifiers are those closer to the zero
false positive axis or with a higher true positive rate.
In other words the classifiers lying on the convex hull.

Often classifiers have some variable threshold or tuning
parameter whereby their trade off between false posi-
tives and true positives can be adjusted. This means
their Receiver Operating Characteristics (ROC) are
now a curve rather than a single point. Scott applied
his random combination method to each set of points
along the curve. So the “maximum realisable” ROC is
the convex hull of the classifier’s ROC. Indeed, if the
ROC curve is not convex, an improved classifier can
easily be created from it [Scott et al., 1998b] (see Fig-
ure 4). The nice thing about the MRROC, is that it
is always possible. But as we show it may be possible
to do better automatically.

4 DEMONSTRATION PROBLEMS

[Scott et al., 1998b] contains three benchmarks. Three
of the following sections (4.2, 4.3 and 4.5) describe
the preparation of the datasets. Sections 4.1 and 4.4
describe the two classifiers Scott used.

4.1 LINEAR CLASSIFIERS

In the first two examples (Sections 4.2 and 4.3) we use
a tunable linear classifier for each data attribute (di-
mension). This classifier has a single decision value
(a threshold). If examples of the class lie mostly at
high values then, if a data point is above the thresh-
old, the classifier says the data point is in the class.
Otherwise it says it isn’t. To produce a ROC curve

2

the threshold is varied from the lowest possible value
of the associated attribute to the highest.

To use a classifier in GP we adopt the convention that
non-negative values indicate the data is in the class.
We also require the classifier to indicate its “confi-
dence” in its answer. In our GP, it does this by the
magnitude of the value it returns.

(The use of the complex plane would allow extension
of this signalling to more than two classes. Absolute
magnitude would continue to indicate the classifiers
confidence. While the complex plane could be divided
into (possibly unequal) angular segments, one for each
class. An alternative would be to allocate each class
a point in the complex plane. The designated class
would be the one closest in the complex plane. But if
two class origins were a similar distance from the value
returned by GP this would indicate the classifier was
not sure which of the two classes to choose).

The linear classifier splits the training set at the
threshold. When predicting, it uses only those exam-
ples which are the same side of the threshold as the
point to be classified and chooses the class to which
most of them belong. Its “confidence” is the differ-
ence between the number of training examples below
the threshold in each class divided by their sum. Note
the value returned to GP lies in the range −1 . . .+ 1.

4.2 OVERLAPPING GAUSSIAN

Following [Scott et al., 1998b, Section 3.1 and Figure 3]
we created a training and a verification dataset, each
containing 5000 randomly chosen data points. The
points are either in class 1 or class 2. 1250 values were
created using Gaussian distributions each with a stan-
dard deviation of 0.5. Those of class 1 had means of
3 and 7. While those used to generate class 2 data
had means of 5 and 9. Note this gives rise to inter-
locking regions with some degree of overlap at their
boundaries, see Figure 2.

Clearly a linear classifier (LC) with only a single deci-
sion point can not do well on this problem. Figure 3
shows its performance in terms of the trade off between
false positives and true positives.

4.3 THYROID

The data preparation for the Thyroid problem follows
Scott’s. The data was down loaded from the UCI ma-
chine learning repository1. ann.train was used for the
training set and ann.train2 for the verification set.

1ftp://ftp.ics.uci.edu/pub/machine-learning-
databases/thyroid-disease

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11

C
ou

nt
 (

hi
st

og
ra

m
)

Feature value

Class 1
Class 2

Figure 2: Example of a two class multi-modal data de-
signed to be difficult for a linear classifier (Section 4.1).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e
P

os
iti

ve
s

False Positives

Figure 3: The Receiver Operating Characteristics
curve produced by moving the decision boundary along
the x-axis of Figure 2. The ROC are stepped as the
classifier (Sect. 4.1) cannot capture the nature of the
data.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e
P

os
iti

ve
s

False Positives

ROC linear classifier, area 0.7498
Convex Hull, area 0.8634

Figure 4: The convex hull of the ROC curve of Fig-
ure 3. Note a tunable classifier is improved by com-
bining with itself, if its ROC are not convex.

3

ftp://ftp.ics.uci.edu/pub/machine-learning- databases/thyroid-disease
ftp://ftp.ics.uci.edu/pub/machine-learning- databases/thyroid-disease

(Both contain 3800 records). Originally it is a three
class problem, the two classes for abnormal thyroids
(79 and 199 records each in ann.train) were combined
into one class. The GP is limited to using the two
attributes (out of a total of 21) that Scott used. (Us-
ing all the attributes makes the problem much easier).
Following strange floating point behaviour, both at-
tributes were rescaled by multiplying by 1000. Rescal-
ing means most numbers are integers between 1 and
200 (cf. Figure 10). Scott does not report rescaling.
Two linear classifiers (LC18 and LC19) were trained,
one on each attribute (D18 and D19) using the training
set.

4.4 NAIVE BAYES CLASSIFIERS

The Bayes [Ripley, 1996; Mitchell, 1997] approach at-
tempts to estimate, from the training data, the prob-
ability of data being in each class. Its prediction is
the class with the highest estimated probability. We
extend it 1) to include a tuning parameter to bias its
choice of class and 2) to make it return a confidence
based upon the difference between the two probabili-
ties.

Naive Bayes classifiers are based on the assumption
that the data attributes are independent. I.e. the prob-
abilities associated with a data point are calculated by
multiplying the estimates of the probabilities associ-
ated with each of its attributes.

The probabilities estimates of each class are based
upon counting the number of instances in the train-
ing set for each attribute (dimension) that match both
the point to be classified and the class, and dividing by
the total number of instances which match regardless
of the class. The estimates for each attribute are then
multiplied together to give the probability of the data
point being in a particular class.

The functions P0,a and P1,a use to estimate the prob-
abilities for classes from training set attributes a

Pc,a(E) = Pr(class = c)
∏
j∈a

Pr(Xj = vj |class = c)

As an example, consider the data point E =
(6, 7, 8, 9, 10, 11, 12, 13) and a classifier using the set
of attributes a = {2, 3, 5}. Then the probability E is
in class 0, P0,a(E), is estimated to be, the probabil-
ity of class 0 times, the probability that attribute 2
is 7 given the data is in class zero times, the proba-
bility attribute 3 is 8 (given the class is zero) times,
the probability attribute 5 is 10 (given the class is
zero). The calculation is repeated for the other classes

(i.e. for class 1). The classifier predicts that E be-
longs to the class with the highest probability estimate.
I.e. if P0,a(E) < P1,a(E) then the Naive Bayes classi-
fier (working on the set a of attributes) will predict
the example data point E is in class 1, otherwise 0.

If there is no training data for a given class/attribute
value combination, we follow [Kohavi and Sommer-
field, 1996, page 11] and estimate the probability
based on assuming there was actually a count of 0.5.
([Mitchell, 1997] suggests a slightly different way of
calculating the estimates).

Since the denominators in Pc,a are the same for all
classes we can remove them and instead work with B

Bc,a(E) =

Number(class = c)
∏
j∈a

Number(Xj = vj ∩ class = c)

A threshold T (0 ≤ T ≤ 1), allows us to introduce
a bias. I.e. if (1 − T) × B0,a(E) < T × B1,a(E) then
our Bayes classifier will predicts E is in class 1, oth-
erwise 0. Finally we define the classifiers “confidence”
to be |B0,a(E)−B1,a(E)|

(B0,a(E)+B1,a(E)) .

4.5 GREY LANDSAT

Despite some care we have not been able to repro-
duce exactly the graphical results pictured in [Scott et
al., 1998a] and [Scott et al., 1998b]. The Naive Bayes
classifiers on the data we have appear to perform some
what better. This makes the problem more challeng-
ing since there is less scope for improvement. [Scott et
al., 1998a] and [Scott et al., 1998b] show considerable
crossings in the ROC curves of the five classifiers they
use. The absence of this in our data may also make it
harder (see Figure 11).

The Landsat data comes from the Stalog project via
the UCI machine learning repository2. The data is
spilt into training (sat.trn 4425 records) and test
(sat.tst 2000). Each record has 36 continuous at-
tributes (8 bit integer values nominally in the range
0–255) and 6 way classification. (Classes 1, 2, 3, 4, 5
and 7). Following Scott; classes 3, 4 and 7 were com-
bined into one (positive, grey) while 1, 2 and 5 became
the negative examples (not-grey). sat.tst was kept
for the holdout set.

The 36 data values represent intensity values for nine
neighbouring pixels and four spectral bands (see Fig-
ure 5). While the classification refers to just the cen-
tral pixel. Since each pixel has eight neighbours and

2ftp://ftp.ics.uci.edu/pub/machine-learning-
databases/statlog/satimage

4

ftp://ftp.ics.uci.edu/pub/machine-learning- databases/statlog/satimage
ftp://ftp.ics.uci.edu/pub/machine-learning- databases/statlog/satimage

Figure 5: Each record contains data from nine ad-
jacent Landsat pixels. Scott’s five classifiers (nb16,
nb16,23 nb16,23,24 nb23,24 and nb8,23,24) together
use four attributes, Three (8, 16, 24) use spectral
band 0 and the other (23) uses band 3. Notice how
they straddle the central pixel in a diagonal configura-
tion. However nb23,24 (which straddles both the area
and the spectrum) has the best performance of Scott’s
Naive Bayes classifiers.

each may be in the dataset, data values appear multi-
ple times in the data set. But when they do, they are
presented as being different attributes each time. The
data come from a rectangular area approximately five
miles wide.

After reducing to two classes, the continuous values
in sat.trn were partitioned into bins before it was
used by the Naive Bayes classifier. Following [Scott et
al., 1998a, page 8], we used entropy based discretisa-
tion [Kohavi and Sommerfield, 1996], implemented in
MLC++ discretize.exe3, with default parameters.
(Giving between 4 and 7 bins per attribute). To avoid
introducing bias, the holdout data (sat.tst) was par-
titioned using the same bin boundaries.

sat.trn was randomly split into training (2956
records) and verification (1479) sets. The Bayes clas-
sifiers use the discrete data. In some experiments, the
GP system was able to read data attributes values di-
rectly. In which case it used the continuous (floating
point) value, rather than the attribute bin number.

5 GP CONFIGURATION

The GP is set up to signal its prediction of the class
of each data value in the same was as the classifiers it
can use. I.e. by return a floating point value, whose
sign indicates the class and whose magnitude indicates
the “confidence”. (Note confidence is not constrained
to lie in a particular range).

Following earlier work [Jacobs et al., 1991; Soule, 1999;
Langdon, 1998] each GP individual is composed of five

3http://www.sgi.com/Technology/mlc

trees. Each of which is capable of acting as a classifier.
The use of signed numbers makes it natural to combine
classifiers by adding them. I.e. the classification of the
“ensemble” is the sum of the answers given by the five
trees. Should a single classifier be very confident about
its answer this allows it to “out vote” the all others.

We have not systematically experimented with the
number of trees or alternative methods of combining
them. The simplest problem can be solved with only
one. Also in many individuals one or more of the trees
appear to have little or a very basic function, such as
always returning the same value or biasing the result
by the threshold parameter.

5.1 FUNCTION AND TERMINAL SETS

The function set includes the four binary floating
arithmetic operators (+, ×, − and protected division),
maximum and minimum and absolute maximum and
minimum. The latter two return the (signed) value
of the largest, (or smallest) in absolute terms, of their
inputs. IFLTE takes four arguments. If the first is less
than or equal to the second, IFLTE returns the value
of its third argument. Otherwise it returns the value
of its fourth argument. INT returns the integer part
of its argument, while FRAC(e) returns e - INT(e).

The classifiers are represented as floating point func-
tions. Their threshold is supplied as their single argu-
ment. As described in Sections 4.1 and 4.4.

The terminal T yields the current value of the thresh-
old being applied to the classifier being evolved by
GP. In some experiments the terminals Dn were used.
These contain the value of attribute n. Finally the
GP population was initially constructed from a num-
ber of floating point values. These constants do not
change as the population evolves. However crossover
and mutation do change which constants are used and
in which parts of the program. GPQUICK limits the
number of constants to about 200.

5.2 FITNESS FUNCTION

Each new individual is tested on each training exam-
ple with the threshold parameter (T) taking values
from 0 to 1 every 0.1 (i.e. 11 values). So, depend-
ing upon the problem, it is run 55000, 41800 or 32516
times. For each threshold value the true positive rate
is calculated. (The number of correct positive cases
divided by the total number of positive cases). If a
floating point exception occurs its answer is assumed
to be wrong. Similarly its false positive rate is given by
the no. of negative cases it gets wrong divided by the
total no. of negative cases. It is possible to do worse

5

http://www.sgi.com/Technology/mlc

than random guessing. When this happens, i.e. the
true positive rate is less than the false positive rate,
the sign of the output is reversed. This is common
practise in classifiers.

Since a classifier can always achieve both a zero success
rate and 100% false positive rate, the points (0,0) and
(1,1) are always included. These plus the eleven true
positive and false positive rates are plotted and the
area under the convex hull is calculated. The area
is the fitness of the individual GP program. Note the
GP individual is not only rewarded for getting answers
right but also for using the threshold parameter to get
a range of high scores. Cf. Table 1.

6 RESULTS

6.1 OVERLAPPING GAUSSIAN

In the first run the best fitness score (on the train-
ing data) was 0.981556. The first individual with this
score was found in generation 21 and was treated as
the output of the GP. Its total size (remember it has
five trees) is 92. On another 5000 random data points
its fitness was 0.981607. Its ROC are shown in Fig-
ure 6. (The linear classifier’s convex hull area is 0.85).

Since we know the under lying distribution in this (ar-
tificial) example, we can calculate the optimal ROC
curve, see Figure 6. The optimal classifier requires
three decision boundaries, which correspond to the
overlap between the four interlocking Gaussians. Fig-
ure 6 shows this GP individual has near optimal be-
haviour. Its output for one threshold setting (0.3) is
given in Figure 7. Figure 7 shows GP has been able
to use the output of the linear classifier to create three
decision points (remember the linear classifier has just
one) and these lie at the correct points.

Figure 8 shows, in each of the problems, little change
in program size occurs after the first five generations
or so. This is despite little or no improvement in the
best fitness. This may be due to “size fair crossover”
[Langdon, 2000].

6.2 THYROID

In one run the best fitness rose steadily to a peak of
0.838019 at generation 50. The program with this fit-
ness has a total size of 60. On the verification set it has
a fitness of 0.860040. Its ROC are shown in Figure 9.

Its bulk behaviour is to combine the two given (sin-
gle attribute, single threshold) classifiers to yield a
rectangular area near the origin. As the threshold is
increased, the rectangle grows to include more data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e
P

os
iti

ve
s

False Positives

Threshold 0.3

Linear Classifier
GP training

GP verification
Optimal

Figure 6: The ROC of GP (generation 21) classifier
on interlocking Gaussians. Note it has near optimal
performance.

points. Thus increasing the number of true positives,
albeit at the expense of also increasing the number of
false positive. Eventually with a threshold of 1, the
rectangle covers all thyroid disease cases. Figure 10
shows the decision boundary for a threshold of 0.5.
The superior performance of the GP classifier arises,
at least in part, because it has learnt to recognise reg-
ularities in the training data. In particular it has spot-
ted columns of data which are predominantly either all
negative or positive and adjusted its decision boundary
to cover these.

6.3 GREY LANDSAT

In the first GP run fitness rose quickly in the first
six generations but much slower after that. The best
training fitness was 0.981855 which was first discov-
ered in generation 49. The ROC of this individual are
shown in Figure 11. The area of its convex hull is big-
ger than all of those of its constituent classifiers. On
the holdout set, its ROC are better than all of them,
except for one threshold value where it has 3 false neg-
atives v. 1 for the best of the Naive Bayes classifiers.

7 DISCUSSION

So far we have used simple classifiers with few param-
eters that are learnt. This appears to make them ro-
bust to over fitting. In contrast one often needs to
be careful when using GP to avoid over fitting. In
these experiments we have seen little evidence of over
fitting. This may be related to the problems them-
selves or the choice of multiple tree programs or the
absence of “bloat”. The absence of bloat may be due

6

Table 1: GP Parameters (Variations between problems given in brackets or on separate lines)

Objective: Evolve a function with Maximum Convex Hull Area
Function set: INT FRAC Max Min MaxA MinA MUL ADD DIV SUB IFLTE

common plus Gaussians LC
Thyroid LC17 LC18
Grey Landsat nb16 nb16,23 nb16,23,24 nb23,24 nb8,23,24

Terminal set: Gaussians T, 0, 1, 200 unique constants randomly chosen in −1 . . .+ 1
Thyroid T, D17, D18, 0, 0.1, 1, 212 unique constants randomly chosen from the test set.
Grey Landsat T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fitness: Area under convex hull of 11 ROC points. (5000, 3800, 2956) randomly chosen test points
Selection: generational (non elitist), tournament size 7
Wrapper: ≥ 0⇒ positive, negative otherwise
Pop Size: 500
No size or depth limits
Initial pop: ramped half-and-half (2:6) (half terminals are constants)
Parameters: 50% size fair crossover [Langdon, 2000], 50% mutation (point 22.5%, constants 22.5%, shrink 2.5%

subtree 2.5%)
Termination: generation 50

-1.5

-1

-0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10 11

va
lu

e
re

tu
rn

ed

Feature value

Class 2

Class 1

Figure 7: Value returned by evolved classifier (thresh-
old=0.3) evolved on the interlocking Gaussians prob-
lem. High fitness comes from GP being able to use
given classifier to distinguish each of the Gaussians.
Note zero crossings align with Gaussians, Figure 2.

to our choice of size fair crossover and a high mutation
rate. Our intention is to evaluate this GP approach on
more sophisticated classifiers and on harder problems.
Here we expect it will be essential to ensure the clas-
sifiers GP uses do not over fit, however this may not
be enough to ensure the GP does not.

8 CONCLUSIONS

[Scott et al., 1998b] has proved one can always com-
bine classifiers with variable thresholds to yield a com-
posite with the “Maximum Realisable Receiver Op-

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50

P
op

ul
at

io
n

M
ea

n
an

d
S

ta
nd

ar
d

D
ev

ia
tio

n
of

 P
ro

gr
am

 S
iz

e

Generations

Overlapping Gaussians
Thyroid

Grey Landsat

Figure 8: Evolution of total program size in one GP
run of each the three problems.

erating Characteristics” (MRROC). Scott’s MRROC
is the convex hull of the Receiver Operating Charac-
teristics of the individual classifiers. Previously we
showed [Langdon and Buxton, 2001] genetic program-
ming can in principle do better automatically. Here we
have shown, using Scott’s own bench marks, that GP
offers a systematic approach to combining classifiers
which may exceed Scott’s MRROC. (Using [Scott et
al., 1998b]’s proof, we can ensure GP does no worse
than the MRROC).

Mutation and size fair crossover [Langdon, 2000] mean
there is little bloat.

7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e
P

os
iti

ve
s

False Positives

Threshold 0.5

GP training, 0.838019
GP verification, 0.860040

Linear Attribute 17 (training)
Linear Attribute 18 (training)

Figure 9: The ROC produced by GP (gen 50) using
threshold values 0, 0.1, . . . , 1.0 on the Thyroid data.

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120 140

A
ttr

ib
ut

e
18

Attribute 17

Decision boundary
Abnormal Thyroid, found

Abnormal Thyroid, missed
Healthy

Figure 10: Decision boundary (threshold 0.5) for the
Thyroid data produced by GP. The origin side of the
boundary are abnormal (179 found, missed 99). 2982
correctly cleared, 540 false alarms.

References

[Freund and Schapire, 1996] Y. Freund and R. E.
Schapire. Experiments with a new boosting algo-
rithm. In Machine Learning: Proc. 13th Interna-
tional Conference, pp 148–156. Morgan Kaufmann.

[Jacobs et al., 1991] R. A. Jacobs, M. I. Jordon, S. J.
Nowlan, and G. E. Hinton. Adaptive mixtures of
local experts. Neural Computation, 3:79–87, 1991.

[Kohavi and Sommerfield, 1996] R. Kohavi and D.
Sommerfield. MLC++: Machine learning library
in C++. Technical report, http://www.sgi.com/
Technology/mlc/util/util.ps.

[Langdon and Buxton, 2001] Evolving receiver oper-
ating characteristics for data fusion. In J. F. Miller

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

T
ru

e
P

os
iti

ve
s

False Positives

GP training, 0.981855
GP verification, 0.982932

GP holdout, 0.978397
Naive Bayes classifiers, holdout

Figure 11: The ROC produced by GP (generation
49) using threshold values 0, 0.1, . . . , 1.0 on the Grey
Landsat data. The ROC of the five given Naive Bayes
classifiers are given on the holdout set.

et al., eds., EuroGP’2001, LNCS 2038, pp 87–96,
Springer-Verlag.

[Langdon, 1998] W. B. Langdon. Data Structures and
Genetic Programming. Kluwer.

[Langdon, 2000] W. B. Langdon. Size fair and homol-
ogous tree genetic programming crossovers. Genetic
Programming & Evolvable Machines, 1(1/2):95–119.

[Mitchell, 1997] T. M. Mitchell. Machine Learning.
McGraw-Hill, 1997.

[Ripley, 1996] B. D. Ripley. Pattern Recognition and
Neural Networks. Cambridge University Press.

[Scott et al., 1998a] M. J. J. Scott, M. Niranjan, and
R. W. Prager. Parcel: feature subset selection in
variable cost domains. Technical Report CUED/F-
INFENG/TR.323, Cambridge University, UK.

[Scott et al., 1998b] Realisable classifiers: Improving
operating performance on variable cost problems.
In P. H. Lewis and M. S. Nixon, eds., Ninth British
Machine Vision Conference, pages 304–315,

[Soule, 1999] T. Soule. Voting teams: A cooperative
approach to non-typical problems using genetic pro-
gramming. In W. Banzhaf et al., eds., GECCO,
pages 916–922. Morgan Kaufmann.

[Swets et al., 2000] J. A. Swets, R. M. Dawes, and J.
Monahan. Better decisions through science. Scien-
tific American, pages 70–75, October.

[Yusoff et al., 1998] Combining multiple experts for
classifying shot changes in video sequences. In IEEE
Int. Conf. on Multimedia Computing and Systems.

8

	INTRODUCTION
	BACKGROUND
	``MAXIMUM REALISABLE'' ROC
	DEMONSTRATION PROBLEMS
	LINEAR CLASSIFIERS
	OVERLAPPING GAUSSIAN
	THYROID
	NAIVE BAYES CLASSIFIERS
	GREY LANDSAT

	GP CONFIGURATION
	FUNCTION AND TERMINAL SETS
	FITNESS FUNCTION

	RESULTS
	OVERLAPPING GAUSSIAN
	THYROID
	GREY LANDSAT

	DISCUSSION
	CONCLUSIONS

