
GECCO Companion, CIGPU 2011 workshop, Simon Harding et al. Eds., p415–422.

Debugging CUDA

William B. Langdon
Dept. of Computer Science, University College London

Gower Street, WC1E 6BT, UK
W.Langdon@cs.uc1.ac.uk

ABSTRACT
During six months of intensive nVidia CUDA C program-
ming many bugs were created. We pass on the software engi-
neering lessons learnt, particularly those relevant to parallel
general-purpose computation on graphics hardware GPGPU.

Categories and Subject Descriptors:
D.2.5 [Software Engineering]: Testing and Debugging—
Distributed debugging
General Terms Verification
keywords computer game hardware, graphics controller,
GPU, parallel computing, RCS

1. INTRODUCTION
The absence of sustained increases in processor clock speed,
which characterised the second half of the twenty century, is
starting to force even mass-market applications to consider
parallel hardware. The availability of cheap high speed net-
works makes loosely linked CPUs, in either Beowulf, grid or
cloud based clusters attractive. Even more so since they run
operating systems and programming development environ-
ments which are familiar to most programmers. However
their performance and cost advantages lie mostly in spread-
ing overhead (e.g. space, power) across multiple CPUs. In
contrast, in theory, a single high end graphics card (GPU)
can provide similar performance and indications are that
GPU performance increases will continue to follow Moore’s
law [1] for some years. The competitive home computer
games market has driven and paid for GPU development,
with nVidia selling hundreds of millions of CUDA compati-
ble cards [2]. Engineers and scientists have taken advantage
of this cheap, powerful and accessible computer power to
run parallel computing. nVidia is now actively encouraging
them by marketing GPUs dedicated to computation rather
than graphics. Indeed the field of general purpose computa-
tion on graphics hardware GPGPU has been established [3].

There are many documents and tutorials on programming
graphics hardware for general purpose computing. Mostly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0690-4/11/07 ...$10.00.

they are concerned with perfect high performance code. Most
software engineering effort is not about writing code but
about testing it, debugging it, maintaining it, and even try-
ing to understand it. Despite a number of GPGPU con-
ferences and workshops, such as CIGPU, development of
GPGPU software remains a black art, often at the edge
of feasibility. Debugging is key to any software develop-
ment but little has been published about getting non-trivial
CUDA application to work.

Although tools are improving, we concentrate upon how
debugging is done for real. We shall assume the reader is
already familiar with nVidia’s parallel computing architec-
ture, CUDA. Although many lessons are general, the exam-
ples use nVidia’s GPUs with the CUDA C compiler, nvcc,
directly rather than via Microsoft’s visual studio. One po-
tential debugging technique would be to dump intermedi-
ate results directly to the GPU’s DVI or HDMI output and
thence to a screen or speaker, however we are concerned
with general purpose computing algorithms and so we don’t
assume the reader is an expert graphics programmer. The
next section describes coding techniques to aid debugging.
Section 3 described testing CUDA C applications, whilst
Section 4 describes some bugs, the techniques used to find
them and how they were fixed.

2. DEBUGGING TECHNIQUES

2.1 Defensive Programming
2.1.1 Kernel Loops
The hardest problem to debug is probably when the kernel
fails. Since CUDA GPUs do not have timeouts, this can
mean the kernel never returns. It may lock the whole GPU.
If you are using the same GPU to drive your computer’s
monitor, it will appear as if the whole computer has failed.
It may require the computer to be restarted to reset the
GPU. Notice not only is the result painful but you may get
no indication of what has gone wrong or where. Further its
quite likely that it will happen again.

Given this is one of the worse bugs it is probably worth
some defensive programming. A useful approach, partic-
ularly during development is to log a description of every
kernel launch, before it is started. Conditional compila-
tion switches could be used to remove it from production
code. (It may also be necessary to flush the log before ask-
ing CUDA to start the kernel.) When a kernel fails, or is
interrupted, the last thing in the log should give you an
indication of where the error lies. I tend to write not just
the kernel’s name but also the thread grid dimensions, block

415

http://www.cs.ucl.ac.uk/staff/W.Langdon/cigpu/
http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.ucl.ac.uk/staff/W.Langdon/cigpu/

size, number of bytes of shared memory requested and pa-
rameters to the kernel. In the case of arrays, I write the
volume of the data in the array, rather than all it’s values.
This is probably unnecessary for most bugs but it is easier
to be consistent and it is impossible to be sure in advance
which information in the log will be useful.

printf("kernel<<<%d,%d,%d>>>(%d,%d,%d,<%d>,<%d>,<%d>:",

grid_size, block_size, shared_size,

height,width,len,

len*sizeof(int),

len*width*sizeof(unsigned int),

len*sizeof(int));

printf("<%d>,<%d><%d>)\n", //outputs

len*width*sizeof(unsigned int),

len*width*sizeof(unsigned int),

3*sizeof(int));

kernel<<<grid_size, block_size, shared_size>>>

(height,width,len,d_in,d_a,d_y,d_out1,d_out2,d_status);

cutilCheckMsg("kernel() execution failed.\n");

Given the CUDA parallel processing architecture, it is sel-
dom necessary, apart from the main thread loop, to have
loops in kernel code. Similarly recursion is seldom used (in
fact it is has only recently become possible). Thus it should
not be too difficult to track all (potential) loops in your code
and make absolutely sure that they terminate. A recent bug
will show how this was used and proved very helpful.

int id = -1; //found it

int free = -1; //free slot

int i = hash(value,Nvalue); //start search at i

int loop = 0; //prevent looping forever

do {

if(s_value[i]==value) {id =i; break;}

if(s_value[i]== 0) {free=i; break;}

i++; if(i>=Nvalue) i=0; //Goto beginning of s_value

} while(loop++ < Nvalue);

if(id == -1 && free <0) Error(0x99960000,Nvalue);

}

The do while loop searches s_value for value. On success-
ful exit id will indicate where it is. If it has not already
been stored, free will say where it can be stored. hash() is
only used to speed the search. If things were working as ex-
pected, the while loop could have been coded as while(1)

However we know in advance the maximum number of times
the loop should go round. (It is Nvalue, the size of the array
s_value.) Therefore we can use while(loop++ < Nvalue)

to force the loop to terminate, knowing it will catch indefi-
nite loop errors but not abort the loop too soon. In fact the
two break statements are the only legitimate ways of exiting
the loop. An older programmer may have used goto, which
might have simplified the last line.

The last line, checks the loop terminated as expected and
if not reports an error. If, in some unexpected future run, we
have more examples of value than we have space in s_value

the error could arise legitimately. If we had not provided a
check on loop++, this would cause the kernel to lock up the
GPU and hence the monitor would freeze.

In an actual bug, hash() returned a very negative value.
The search loop terminated and the problem was reported
by via Error() on the last line.

The following loop structure was based on CUDA’s SDK
examples. Note this loop is not protected.

int tid = MUL(blockDim.x, blockIdx.x) + threadIdx.x;

int threadN = MUL(blockDim.x, gridDim.x);

for(int i = tid; i < length; i += threadN){...}

CUDA should provide legal values for blockDim.x, grid-
Dim.x, threadIdx.x and so the loop should always terminate
and so is commonly not protected. However in one kernel
it was desired to dedicate different blocks of threads within
the grid to different parts of the calculation and a bug was
introduced when the second MUL was changed. This lead to
threadN being set to zero and the kernel running until man-
ually aborted. Of course, after the fact, it is also possible
to add code to detect indefinite loop errors in this construct
too. However, as errors here are not expected, it it seldom
done.

2.1.2 Kernel Launch Failure
When launching a Kernel always follow kernel_name<<<...>>>

with cutilCheckMsg("kernel_name execution failed.\n");

This will ensure you know which was the first kernel to
fail. In fact you should wrap all calls to CUDA routines
with cutilSafeCall() or cutilCheckError(). (There is seldom
a good reason for allowing the code to continue passed an
error.) See examples in CUDA’s SDK routines.

Sometimes the error message supplied by CUDA can be
helpful but often it is very general. E.g. cutilCheckMsg

cudaThreadSynchronize error: kernel_name execution

failed in file <kernel.cu>, line 1455 : unspecified

launch failure. This error message says there is an error
somewhere. It is probably related to a particular kernel
launch and the message tells you where in your source code
to start looking. Sometimes cuda-memcheck --continue can
give additional information perhaps confirming the bug is an
addressing error within the kernel.

The information you have written to the log can some-
times be very helpful. For example did you tell CUDA
to launch a kernel with zero threads per block? Was the
grid size more than 65535? Or did you tell it to use more
shared memory than the GPU has? Sometimes index array
out of bounds errors inside the kernel can be reported as
unspecified launch failure.

The string you supply to cutilCheckMsg() need not be
fixed. If, for example, you start your kernel in a loop you
could make the string you pass to cutilCheckMsg() include
the loop index.

2.1.3 GPU Device Buffers
High end GPUs typically have a lot of high speed “graphics”
memory. PCs with their lower performance typically have
lower speed memory. Since it is cheaper, host computers
typically have more memory than GPUs.

A good CUDA coding convention is to allocate a buffer
in the PC’s memory for each buffer in the GPU’s global
memory. The host and device buffers are of the same type
and same size.

Given the high initial overhead on both starting kernels
and transferring buffers, GPGPU applications tend to have
a few large buffers. Even a complex application is unlikely
to have more than a dozen PC/GPU pairs of buffers.

It turns out that allocating CUDA device buffers has a
very high overhead, so typically they and their shadow PC
buffer are allocated once when the application starts and
reused many times. I suggest you adopt a naming convention
which makes it is obvious which buffers are on the CPU and
which on the GPU and which shadows which.

416

Use cudaMalloc to create GPU global memory buffers:

cutilSafeCall(cudaMalloc(

(void**)&d_buffer, buff_size*sizeof(int)));

2.1.4 Host PC Buffers
The host buffers can be created in the usual C or C++ ways
however it is more efficient to ensure that they are locked
into the PC’s memory rather than being pageable. (Effec-
tively this saves a buffer copy). Normally this effectively
doubles the transfer speed to and from the GPU. However
in once case, switching to non-paged memory gave a 27 fold
speed up. cudaMallocHost provides a convenient way of
allocating “pinned memory”:

printf("Allocating non-paged host memory\n");

cutilSafeCall(cudaMallocHost(

(void**)&Buffer, buff_size*sizeof(int)));

Even though “pinned memory” is in host RAM, some ver-
sions of the GNU GDB debugger cannot access it. Instead
it produces error messages confusingly similar to those it
produces if you try and access the GPU’s memory via GDB.

2.1.5 Debugging Device Buffers
GPU device buffers are often huge, typically containing thou-
sands or millions of data. Too many to check all individually.
It is not always easy to construct small test examples which
highlight particular bugs. Indeed the bug may only manifest
itself with larger data sets.

Sometimes the GNU GDB debugger can deal with whole
arrays. However the ability to interactively display arrays,
even in an intelligible screen format, rapidly becomes less
useful as the arrays get bigger. The CUDA programming
style tends to mean pointers to buffers are passed around
the code and (even without the problem of“pinned memory”
mentioned in the previous section) GDB rapidly loses the
sense of data as being an array and human access is only
via pointers and offsets. Interactive access via pointers and
offsets is tedious and hence error prone.

What has proved useful is creating a suite of host func-
tions, one per data type, which simply dump an entire GPU
buffer into a disk file in human readable format. (Depending
upon your application, you may also want functions to load
data from disk.) The files mean the whole of a buffer can
be rapidly inspected by eye. They can also be subjected to
semi-automatic sanity checks. These might be informal or
only true in particular circumstances. E.g. you might want
to double check there are exactly 273 non-zero elements in
the buffer. It can be easier to apply such variable checks
outside your application code.

Notice the following debug code does not use the host/GPU
shadow but creates it’s own dedicated buffer and reads from
the GPU. The idea is to avoid cross talk between the de-
bug code and the code being debugged. We avoid making
assumptions about what we thought we had put into the
GPU and instead read what is actually there.

if(debugging) {

my_type* in = new my_type[size];

cutilSafeCall(

cudaMemcpy(in, d_in, size*sizeof(my_type),

cudaMemcpyDeviceToHost));

print_my_type("In.txt",in,size);

delete[] in;

}

Each of the print routines sends each datum to an output
file one per line. The human readable format of each data
item is as simple and as clear as possible.

void print_my_type(const char* fname,

const my_type buff[],

const int length) {

FILE* ifd = open_(fname);

for(int i=0;i<length;i++) {

fprintf(ifd, "%8d %g\n",

buff[i].timestamp,buff[i].pressure); }

fclose(ifd);

}

When you have a working version of your application these
files become valuable in their own right. The assumption
is, since you know your application is working, then the
contents of the GPU buffers and hence these files is also
correct. Therefore when we produce a new version of the
code (e.g. to tune it’s performance or port it to different
hardware) we can readily re-run the new code on the old
input and use these files to confirm that the contents of the
GPU buffers are as they were before.

The idea of open_() is to automatically give each file a
name which depends on the version of the kernel we are run-
ning. open_() uses a Version macro containing the source
file kernel.cu’s version number: #define Version "Revision:

1.266a ". Thus GPU buffer d_in will be automatically
saved in file In.266a

When either debugging or conducting regression tests there
are at least two reasons why simple comparisons between
two versions of a file might fail. 1) Your code has changed
and the effect of the change on the GPU is being entirely
correctly reflected by differences in the files. 2) The code is
not deterministic but the details of it’s output (even when
correct) depends upon the exact order in which parallel op-
erations appear in the files. Thus running the program twice
need not produce identical files (cf. Section 4.5). This makes
the whole of testing and debugging much more complicated
and so nondeterminism should be avoided. The increased
possibility of creating a successful application may mean it
is better to have deterministic code, even if it is slower.

If nondeterminism or potential future code changes mean
that the order of data inside the GPU might change it is
better to avoid saving line numbers, indexes, time stamps,
etc., in the file. If blocks of data can legitimately move in
the buffer, utilities like diff can often report this as a simple
move of data about the file. Another approach is to sort
the two files and then compare the sorted files. If data have
simply been rearranged, the two sorted files will be identical.
printf() has been available inside CUDA kernels for more

than a year however my preference is still to use the “dump
whole GPU buffer to disk file” approach. It is less intrusive
to the code you are trying to debug and requires no change
to the kernel code at all. Although, with very large files, it
can have an impact on performance, the impact is readily
isolated when inspecting either your own timing log or the
CUDA profiler output. As mentioned above, it gives easy
access to the whole of large data structures and typically in-
tegrates well with regression testing. With modest kernels,
studying their source code, inputs and outputs is often suf-
ficient to quickly locate problems. Perhaps as kernels grow
in complexity, printf()’s ability to report kernel internals
will be more important.

417

2.2 Your First CUDA Kernel
The following way of debugging CUDA kernel’s was sug-
gested by Gernot Ziegler of nVidia. The idea is not to have
the kernel do anything but simply prove to yourself that it
can read it’s inputs and send output to the right place.

When you come to debug more complex kernels, these
steps may still be important. 1) Does the input data reach
the kernel? This may be particularly important if the data
were created by another kernel. 2) Does output leave the
kernel? 3) Do the various threads put the data in the correct
places? Are their values correct?

We start with does the GPU send data to the right place
int tid = MUL(blockDim.x, blockIdx.x) + threadIdx.x;

int threadN = MUL(blockDim.x, gridDim.x);

for(unsigned int t = tid; t < LEN; t += threadN){

d_1D_out[t] = threadIdx.x; }
You will need fair amount of code on the PC to support even
this simple kernel. See the examples in the CUDA SDK
sources directories. These directories include compilation
command scripts. Remember to include code to check the
kernel really is working. Once satisfied with your first kernel,
inject a fault into it [7]. Did it fail in the way you expected?
Did your error checking code catch the error, and handle it in
an appropriate way? Did your revision control system allow
you to recover your working version reliably and correctly?

Ok so now try both input and output. E.g. replace the
contents of the loop with:
d_1D_out[t] = 1 + d_1D_in[t];

What values did you put in d_1D_in? Did you get the ex-
pected values in d_1D_out? Did you get the expected values
in d_1D_in? How fast is it? How does the speed vary: if
the arrays are bigger or smaller? if the arrays are types
other than integer? what happens with different numbers of
threads per block? what happens if the grid size and dimen-
sions are changed? what happens if adding one is replaced
by a more demanding calculation? (Remember to check the
answers the GPU gives.) What do you expect to happen if
you run your kernel on a different GPU?

2.3 CUDA GPU Coding Style
Often GPGPU applications contain only one or two kernels.
Less than half a dozen is very typical. It is common to design
them to be small (e.g. between 9 and 106 lines).

2.4 GPU functions
Although the CUDA C compiler, nvcc, efficiently supports
functions on the GPU, __device__ functions tend not to be
used. Since nvcc inlines function calls, there is no overhead
in calling them but the GPU code is not reduced by being
able to use common subroutines to implement functional-
ity needed in multiple places. Nonetheless nvcc implements
them as full C functions and so one gets the normal devel-
opment advantages of data scoping and variable arguments.
Indeed there is no parameter passing overhead. Nonetheless
one must always remember that the functions are to be run
by many threads in parallel.

A coding problem, unique to parallel computing, is that
the programmer must keep track of which threads are really
going to execute the function. The following shows how this
(and programmer error) created a bug.

Suppose a function assembles an answer in shared memory
(or the answer is passed to it via shared memory) it then
wishes to send the answer to the host PC. It must write it
to global memory. A kernel might use a loop like this:

for(int i=threadIdx.x; i<Nvalue; i+=blockDim.x) {

d_out[i] = s_value[i];

}

Notice how it spreads the work evenly amongst all the threads
and allows the GPUs I/O hardware to efficiently bunch to-
gether large numbers of simultaneous writes into large low
overhead blocks. Even access to the shared memory s_value

avoids the overhead of bank conflicts. Unfortunately the
code may be wrong.

Worse the error lies not in the code itself but in how it
is used. Even worse the error may be very subtle, with
almost all data correct and only incorrect every so often,
depending on exactly what data the kernel is processing.
Indeed if, e.g. for performance reasons, d_out is not reset
between kernel invocations, it’s last contents may be close
to the values expected.

If instead of using a function, we had placed the above
code inside the kernel itself we might have spotted the error
immediately.
for(unsigned int t = tid; t < LEN; t += threadN){

for(int i=threadIdx.x; i<Nvalue; i+=blockDim.x) {

d_out[i] = s_value[i];

}

}

It starts to become clear that there is a relationship between
the threads in the outer loop and those in the inner loop.
The inner loop assumes all blockDim.x threads will run it.
So does the outer one. However the problem arises, because
once t reaches LEN the outer loop assumes it is done and
effectively stops any remaining threads. This only happens
in the last iteration of the outer loop, it only effects the
highest numbered threads. At least it is deterministic but
without studying the code and knowing the details of the
parameters used to launch the kernel and the value LEN we
do not know which threads will be affected. At the start of
the kernel, both loops work well, however at the end some
parts of d_out may not be updated and which ones depends
on too many details.

Notice, to detect this error, it would be better to check
the end of the buffer, rather than it’s start. In fact the bug
was picked up by noticing a regular pattern of zeros towards
the end of the output file (generated using the debugging
technique described in Sections 2.1.3–2.1.5).

This bug arises from parallel computing. In serial com-
puting, once we have coded a subroutine and debugged it,
we are now confident in it and only limited further checks
are made. This is the case here. The code has been checked
and when it is run it works. The problem arises because we
think certain threads are going to run it but they do not.
The code would have worked but it was never run.

To avoid the detailed consideration needed to ensure this
bug does not happen, you should try to code __device__

functions so as to avoid operations which need interaction
between threads. This also has the advantage that __sync

threads() should not normally be needed in functions.

2.5 Shared Memory
Shared memory is rapid access read write on-chip memory
available to blocks of kernel threads. It gives CUDA it’s only
modifiable rapid access arrays. (CUDA threads can have
modifiable “local” arrays but until Fermi, compute level 2.0,
all local data was off chip and consequently slow. Fermi
provides a cache which potentially makes read/write access

418

to local arrays competitive with shared memory.) Shared
memory can also be used as a very rapid way of passing
data between computation threads in the same block. It
cannot link threads from different blocks.

As with global, local and constant memory, there is a
“best” way to arrange your threads when they access shared
memory (which will of course be simultaneously). However
unlike the other three types of memory the penalty for not
using the best is slight and shared memory “bank conflicts”
are not worth worrying about before the kernel is debugged.
However as I have got a better understanding of how GPUs
work, my kernels have used shared memory less.

It is often suggested that shared memory be used as a
cache for your kernel. This can be a bit misleading. It is
not worth using shared memory to buffer either input or out-
put data whilst it is being read from or written to off chip
memory. If you use __syncthreads() to ensure all data has
arrived before you try and use them the GPU loses a large
part of it’s ability to overlap I/O with computing and per-
formance falls horribly [4]. Each thread has a number of
registers. Global data can be read/written directly to/from
a thread register very efficiently without using shared mem-
ory.

Shared memory is required for parallel computing “reduc-
tion”techniques (see SDK’s reduction_kernel.cu). Whereby
each thread calculates part of an answer but the whole an-
swer is created by reducing these partial answers hierarchi-
cally into one (usually thread 0). It takes log2 n steps to
combine the answers of n threads.

SDK’s matrix manipulation examples make heavy use of
shared memory.

In kernels where data are not processed independently
shared memory can be a good place to store intermediate
results. E.g. When scanning and removing duplicates from
large arrays, multiple threads are needed to read the array
rapidly but each thread needs to know which duplicates the
others have found.

There is only a small amount of shared memory and it may
be quickly be exhausted. CUDA’s SDK has examples where
data are first stored in shared memory and then results from
different blocks of threads are combined.

2.6 Error Reporting
The function Error(), mentioned in Sections 2.1.1 and 4.9.2
was introduced into a kernel which was proving very hard
going. It is designed to (eventually) report the first error
detected to the host PC, where code retrieves it and reports
it to the log. Given a parallel multithreaded environment,
it need not always be clear which is the first error. The
implementation of Error() does not try overly hard and the
debugger must always be aware that events may be reported
in an unexpected order. Even so Error() is probably more
sophisticated than necessary for most kernels.

__device__ void Error(const int error,

const short int aux) {

if(s_error==0) s_error = error | (aux & 0xffff);

In the main loop of the kernel we also have

if(s_error) {d_status[2] = s_error; break; }

Notice d_status[2] is shared between all the blocks of threads
and so will suffer from “races”. We do not take special pre-
cautions about this since: it is code that should not normally
be in use, the simpler it is the easier it will be to understand

and the less likely it too will have bugs in. (Debugging de-
bug code is especially annoying1.) However d_status is an
array of 32 bit values, so each one will be self consistent.
Often several blocks of threads will encounter errors and
d_status[2] will contain the first error reported by the last
block of threads. When using it to assist your debugging
you may need to be aware that it was not necessarily the
only error reported by your kernel. You will also need some
code to transfer d_status[2] to the host PC and check it’s
value:

cutilSafeCall(cudaMemset(d_status,0,3*sizeof(int)));
...

cutilSafeCall(

cudaMemcpy(Status, d_status, 3*sizeof(int),

cudaMemcpyDeviceToHost)

);

if(Status[2]) {

printf("ERROR reported by kernel 0x%x\n",Status[2]);

exit(99);

}

In the production code it is tempting to remove Error() or
similar sanity checking code (such as assert in the host code).
I suggest you do not remove it from the source code. In
code that is in use, there will always be another bug and
what you have already developed might help you or the next
programmer find it. Again conditional compilation might be
a good way to disable it. However in one complex kernel,
commenting out“unneeded” sanity checking code saved only
6% of it’s overall execution time.

3. TESTING
Assume new or modified code is wrong. This is particu-
larly important with stochastic AI techniques, such as evo-
lutionary algorithms. Guided by a fitness function, there
are many occasions where evolution has worked around hor-
rendous implementation bugs. From an application point of
view, this is of course a strength. If the genetic algorithm
came up with a good solution, we do not care the implemen-
tation was poor. Indeed it might be argued buggy GAs are
considerably cheaper to implement than perfect ones. From
a scientific point of view this is less satisfactory.

If we are researching an improved crossover for an appli-
cation domain, we want to be sure that any differences are
really due to the crossover operator and not due to bugs in
either our GA or in the GA we are comparing against. The
fact that a good solution was found, does not mean the GA
code we used did what we thought it did.

3.1 Comparison with a “Gold Standard”
Many of nVidia’s SDK examples, not only show how to code
an example in CUDA but also include comparing the GPU’s
results with a traditional implementation of the example.
Can you do the same? Do you have a convenient solution to
your problem (which you are confident is correct)? Can you
knock up a simple (even inefficient) conventional version?
This need not even be written in C, perhaps python, gawk,
shell script, as long as it produces correct (but non-trivial)
answers.

1When you are in the swamp killing alligators, the thing to
remember is that you are not supposed to be killing alliga-
tors; you are supposed to be draining the swamp.

419

It is much easier to compare results if your CUDA code
produces identical results to your gold standard. Insist on
it. Once you get into heavy coding it is easy to assume small
differences are unimportant and as data volumes ramp up
larger differences can be overlooked in a mass of minor ones.

With stochastic methods use (at least during testing) de-
terministic sources of random numbers (PRNGs). Keep a
record of the seeds used in the log. Perhaps use the same
seeds with the GPU and your gold standard code. (Do not
use these seeds during production runs).

With floating point numbers the GPU will produce dif-
ferent answers. Decide in advance how big a difference you
expect. When comparing PC and GPU results, use an au-
tomated method which will only show you unexpected dif-
ferences. Consider if you should include -0, NaN, etc., as
different.

3.2 Regression Testing
Be sparing in your inclusion and careful in the placement
of: version numbers, date stamps and elapse times in out-
put files. Even in correct code, these will be reported as
different and you can quickly be swamped by uninterest-
ing differences, which may (particularly if mixed with other
data) conceal important differences.

3.3 Version Control
You will create multiple version of your source code. At some
point you will insert a fault into it and want to revert to an
earlier version. You will want to be able to compare different
versions. You should start using a convenient version control
system when you start coding.

Having said that the best way to use it will depend on you.
It is easy to delay saving a version whilst coding/debugging
is going well and then find at the end of the day (usually
when tired) that an error has been made and you do not
want to throw away all the nice code written since the last
time you checked kernel.cu into your revision control system
(rcs) before the error was made. However you did not spot
the error as it was made and either your editor will not allow
you to undo the changes or you need to undo so many indi-
vidual character changes that that it itself becomes tedious
and error prone.

On the other hand it is possible to check-in source code
too often so the rcs history log becomes a sequence of mean-
ingless messages of the type “changed function xxx: still not
working”. My preference is for too often. After all saving a
revision will take less time than compiling it.

4. GPU BUGS

4.1 Not all threads available
Another manifestation of the problem described in Section 2.4
occurred when a function was called inside conditional code
within the main kernel.
if(data) {

... lookup data ...

if(missing) save_data(data,...);

}

It is obvious from this code that only certain threads (those
for which data is both non-zero and has not already been
saved) will call save data(). However this is not so clear
when studying, as one is trained to do, save data() in isola-
tion.

Initially there were other problems with save data() and
this bug mearly added to the confusion. For performance
reasons, save data() was redesigned several times and even-
tually detailed knowledge of how it handled threads in dif-
ferent warps was used to implement it efficiently.

Large volumes of test data were passed through the kernel
both to soak test it and to give reasonable estimates of how
it will perform for real. The soak test gives some reassur-
ance that the heavily inspected code really can cope with all
combinations of simultaneous arrival of identical and non-
identical data.

4.2 Shared Memory Bug
The optional third parameter in nvcc’s <<<>>> CUDA kernel
launch syntax allows you to specify the number of bytes of
shared memory available to each block of threads in the
kernel. The nVidia CUDA C programming guide says how
to write your kernel. Unfortunately it is complicated and,
as we shall see, error prone.
kernel<<<grid_size,block_size,shared_size>>>(...)

effectively gives the kernel an anonymous array2 which the
kernel (with the compiler’s help) has to convert into usable
C variables. I have evolved the following (which is based on
the CUDA C programming guide).

There is one shared array. (It appears that if you try
and declare two, they will actually be placed on top of
each other.) It is declared in your .cu file using extern

__shared__ unsigned int shared_array[]; Every shared
variable is explicitly defined as an offset from the start of
it. You should provide host based checks (cf. shared_size)
that these do not run off the top of shared memory. CUDA
will check at run time you have not asked for more shared
memory than your GPU has.

For every kernel that uses shared memory, we define macros
like set shared. Each such macro is used in the scope of it’s
kernel and/or the kernel’s __device__ functions.

#define set_shared \

volatile int* xs_error = (int*) &shared_array[0]; \

volatile int* xs_ndata = (int*) &shared_array[1]; \

volatile unsigned int* s_data = &shared_array[2]; \

volatile int* s_ptr = (int*) &s_data[Nvalue]

#define shared_size ((3+2*Nvalue)*sizeof(int))

#define s_error xs_error[0]

#define s_ndata xs_ndata[0]

...

__device__ void Error(...) {

set_shared;

if(s_error==0) s_error = ...

}

The additional macros s error and s ndata allow the kernel
code to treat them as scalars rather than arrays. Notice ar-
ray s ptr should lie after s data and none of the data should
overlap. The particular bug arose as a cut and past er-
ror whereby instead of using starting s ptr at the last plus
one element of s data (i.e. s data[Nvalue]) another value was
used. Nvalue is a const int set to 800. The wrongly used
variable was set to 600. Hence a quarter of the two arrays

2Anyone else old enough to remember Fortran unnamed
common blocks? They were also a bug waiting to happen.

420

overlapped. This meant the code worked on some small
examples but failed horribly on others. The device buffers
described in Section 2.1.3 and regression testing were used
whilst finding and fixing this bug. However knowing which
parts of the source code had been recently changed lead
quickly to the location of the problem.

4.3 volatile
I tend to avoid exotic parts of programming languages and so
had overlooked nvcc’s use of volatile when declaring shared
memory variables. volatile essentially turns off nvcc’s opti-
misations whereby it uses registers rather than direct access
to shared memory. Normally I would simply let the com-
piler get on with generating code but here was a bug in the
making. Shared memory was deliberately used by multiple
threads. When multiple threads of the same warp write to
the same shared data, the hardware ensures one of them
succeeds and the data from the others is discarded.

When nvcc optimises code which does not use volatile it
may replace an access to shared memory by using a thread
register. This lead my C code to think all the threads had
succeeded in writing. Now that I realise what can happen,
I use volatile on all shared memory declarations. The per-
formance penalty of accessing shared memory rather than
a register is small and I have not yet found an example
where I am sure it is safe to allow the compiler to prevent
inter-thread communication (which is mostly why I am using
shared memory).

4.4 Constant Memory
I going to call this a bug because even though the correct
answers were calculated: in supercomputing we don’t just
want the correct answer but we want it fast, and this wasn’t.

At first sight constant memory appears attractive. Often
applications have important data that we know is not going
to change. Sometimes it looks small enough that it will fit
into 64Kbytes. Or perhaps it is sparse and we can compress
it into 64K. Essentially it can be much faster than global
memory but it is not really 64Kbytes but a 64K window
onto a much smaller caching system [5]. One view is to use
textures instead since these are cached. Another possibility
might be to take advantage of Fermi’s cache and assume it
will have the kernel’s (read only) data in it most of the time
that it is needed.

Here is my view of how constant memory works. Each
kernel has a 64Kbyte window onto the same patch of regular
memory. Only the host PC can update that window but it
can do it multiple times. Each time a thread tries to read
from constant memory, the read request works it’s way up
through a hierarchy of caches. I am sure the details will
vary between GPU architectures but Wong et al. [5] suggests
the closest and hence fastest cache has only space for 512
integers or floats (the largest useful cache is 2048). Hence,
we might think, if each thread block uses somewhat less than
8 KB (ideally less than 2 KB) there is a reasonable chance
constant memory will help. Now it might be that we manage
our kernel so a different thread block reads a different 8 KB,
so it may be we can actually efficiently use all 64 KB if we
are lucky (or skillful) with the details of how we write our
kernel’s reading of __constant__ data. (Have I put you off
yet? It gets worse.)

The hardware restrictions mean only one word can be read
at a time from the __constant__ cache. So if you code your

kernel so that all threads in a warp read the same datum
at the same time all is well. If they read two data, even if
both are in the __constant__ cache, the hardware will stall
some of the threads and the whole read will take twice as
long. In the worse case, where each thread accesses it’s own
datum, the read takes 32 times as long. So while we have an
advertised 64 KB, this is actually something like 512 words
of real fast memory and then we can efficiently only read
one of them!

The CUDA profiler turned out to be very useful. It can
display the compute level 1.x GPU counter warp serialise.
In one case warp serialise was huge, about 23 times the
instruction count. This required the application to be re-
designed. Essentially random access was replaced by a sys-
tem where each block of threads uses only a limited part of
the 64K and usually threads in the same warp read the same
elements of the array at the same time. warp serialise fell to
an average of less then 1% across the kernel and the kernel
at last started to run at a reasonable speed.

The following two code snippets declare and set constant
memory. They are in the same .cu file and so compiled in one
go by nvcc. Placing cudaMemcpyToSymbol() in a host func-
tion allows the GPU Constant array to be changed anywhere
in the host PC code.

__constant__

unsigned int Constant[15*1024]; //1kw free

assert(0<matrix_size &&

matrix_size<=15*1024*sizeof(unsigned int));

cutilSafeCall(

cudaMemcpyToSymbol((const char*)Constant,matrixw,

matrix_size, 0, cudaMemcpyHostToDevice));

4.5 Non-Reproducible Bugs
In industry it can be standard practise to ignore non re-
producible bugs. They are hard to find and hard to fix.
And besides there are plenty of well behaved bugs to fix. In
CUDA the fact that your code behaves differently in differ-
ent circumstances can give you a clue that it suffers from
some race condition. It may be that an asynchronous up-
date problem has been in your code sometime but is only
exposed by a change in load within the kernel or a change in
the way it uses threads, particularly increasing the number
threads above 32.

4.6 Impossible Bugs
Sometimes is just impossible to see why something does not
work. It may be this is an opportunity to re-read the rele-
vant CUDA documentation, find examples which do work, or
consult the various online discussion groups, e.g. the nVidia
CUDA Programming and Development forum. However
perhaps you should use your revision control system to rewind
your source code back to some earlier stable version.

Is it absolutely essential you implement the feature in the
buggy kernel code? If so, is the bug related to the paral-
lel threads? Perhaps it would be sufficient to have a serial
version?

The following example shows using thread zero to force
what should have been done in parallel to be done in series.
(Remember the warning in Section 2.4 that thread zero must
actually execute your serial code.)

421

http://forums.nvidia.com/index.php?showforum=71

if(threadIdx.x==0) { //ugly hack

s_ndata = 0;

for(int i=0; i<Nvalue; i++) {

if(s_data[i]) s_ndata++;

}}

__syncthreads();

4.7 Difficult Code
Perhaps if you suspect something is going to be hard you
should consider writing a prototype first. The idea is the
prototype should the opposite of CUDA. It need not be fast,
it should not be run in parallel and it should be easy to im-
plement. I tend to use gawk scripts because they handle
reading input files much better than C. But it needs to be
something you are comfortable with programming. Hack
about your prototype until you have worked out the trans-
formation you want the kernel code to do and the algorithm
whereby it should do it. Kernels do not take kindly to being
hacked. It should be much easier to work through your ideas
in simple serial host PC code.

The GPU buffer files described in Section 2.1.3 might be
quite a useful source of test data for your prototype. Ensure
at least the“final”version of your prototype and any scripts/
command lines needed to run it are saved in your revision
control system before you go back to coding your kernel.

4.8 CUDA Bugs
Very rarely you will come across bugs in nvcc. Old versions
of nvcc are not going to be fixed. If you have the very newest
nvcc, you can report the problem. In all cases you will have
to work around the problem.

Some advocate the C++ Standard Template Library (STL),
but C++ templates have caused compiler bugs in the past.

4.9 C Coding Bugs
4.9.1 loop++
This was a logic error and not particularly related to CUDA
or parallel computing. I had provided hash() to speed up
searches. The monitoring code suggested a huge problem
with many more hash clashes than searches. Inspecting the
kernel code suggested the problem lay here:

int loop = 0;

do {

if found break;

else ... continue to search ...

} while(loop++ < large limit) //avoid infinite loop

if(loop) report long search
If hashing was working well, in almost all cases the loop

should be exited before the while statement but in many
cases loop was not zero and a hash clash was being re-
ported. The wrong fix was applied. “Obviously” loop++

had incremented loop from 0 to 1, so we should have been
checking if(loop>1) not if(loop). This was the wrong fix
and did not resolve the problem. It turned out the hash-
ing algorithm was flawed, resulting in a hash clash in many
cases causing the while loop to be reached and loop to be
correctly incremented and a hash clash to be correctly re-
ported. Eventually hash() was improved and the number of
hash clashes reported fell dramatically.

Part of the reason for the misdiagnosis was the delay be-
tween when I had first (correctly) written the loop and the
availability of hash() and so the ability to test the loop.
In the intervening period I had forgotten the logic of how

while(loop++ was expected to work. Better comments in
the code might have helped.

4.9.2 Shift Operations and unsigned int

Given the dire warnings about the computational expense of
division on GPUs and for other “efficiency” reasons the use
of left shift << and right shift >> is common place. It is easy
to overlook the warning in [6, p49] which says >> on an int

can either fill with copies of the sign bit (“arithmetic shift”)
or with zeros (“logical shift”) depending on the hardware.
This gave rise to the bug mentioned in Section 2.1.1. For
example when 0x80000000 is right shifted 24 instead of get-
ting 0x00000080 (128) v >> 24 gives 0xffffff80 (-127). Once
found, this is readily fixed by declaring v as unsigned int.

It is claimed that the CUDA optimising compiler, nvcc,
will spot division by integer powers of two and replace them
by the correct shift operation. So it is common to use /32

rather than >>5 and rely on nvcc to create efficient code.
Although Error(0x99960000,Nvalue) quickly trapped the
error, it was actually localised by remembering that the
nearby hash() function had been recently changed and then
asking the rhetorical question “how could hash() generate
unexpected values”.

hash() is expected to return a value between 0 and Nvalue-1,
so conditional code was added to report if hash() returned
something outside this range. E.g. if(i<0 || i>=Nvalue)

Error(0x999a0000,i); Once this confirmed hash() was mis-
behaving (probably producing negative values) if.. Error

could be used to further localise the bug but fundamentally
hash() is short enough for the unexpected source of nega-
tive integers to be traced to my wrong assumptions about
v >> 24 and the declaration of v to be corrected.

5. CONCLUSION

Debugging is the most expensive thing you can
do
Avoid writing new code. Do you really need new code? Can
you reuse nVidia’s examples? Can you use an existing li-
brary? Does it makes sense to treat your application as
a matrix manipulation problem. Is there an existing solu-
tion written in a matrix manipulation language (e.g. Matlab)
which will run on your GPU? Is there an existing GPGPU
solution? Perhaps it is available on the Internet via FTP?

6. REFERENCES
[1] Gordon E. Moore. Cramming more components onto

integrated circuits. Electronics, 38(8):114–117, 1965.

[2] M. Garland and D. B. Kirk. Understanding throughput-
oriented architectures. Commun ACM, 53(11):58–66.

[3] J. D. Owens, et al. GPU computing. Proceedings of the
IEEE, 96(5):879–899, 2008. Invited paper.

[4] W. B. Langdon. Performing with CUDA. In S. Harding
et al, eds., CIGPU 2011, Dublin, 13 July 2011. ACM.

[5] Henry Wong et al. Demystifying GPU microarchitecture
through microbenchmarking. ISPASS 2010. IEEE.

[6] Brian W. Kernighan and Dennis M. Ritchie. The C
Programming Language. second edition, 1988.

[7] W. B. Langdon, M. Harman, and Yue Jia. Efficient
multi-objective higher order mutation testing with
genetic programming. J Syst Software, 83(12):2416–30

422

ftp://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1109/ISPASS.2010.5452013
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_jss.html

	Introduction
	Debugging Techniques
	Defensive Programming
	Kernel Loops
	Kernel Launch Failure
	GPU Device Buffers
	Host PC Buffers
	Debugging Device Buffers

	Your First CUDA Kernel
	CUDA GPU Coding Style
	GPU functions
	Shared Memory
	Error Reporting

	Testing
	Comparison with a ``Gold Standard''
	Regression Testing
	Version Control

	GPU Bugs
	Not all threads available
	Shared Memory Bug
	volatile
	Constant Memory
	Non-Reproducible Bugs
	Impossible Bugs
	Difficult Code
	CUDA Bugs
	C Coding Bugs
	loop++
	Shift Operations and unsigned int

	Conclusion
	References

