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Abstract. Mackey-Glass chaotic time series prediction and nuclear pro-
tein classification show the feasibility of evaluating genetic programming
populations directly on parallel consumer gaming graphics processing
units. Using a Linux KDE computer equipped with an nVidia GeForce
8800 GTX graphics processing unit card the C++ SPMD interpretter
evolves programs at Giga GP operations per second (895 million GPops).
We use the RapidMind general processing on GPU (GPGPU) framework
to evaluate an entire population of a quarter of a million individual pro-
grams on a non-trivial problem in 4 seconds. An efficient reverse polish
notation (RPN) tree based GP is given.

1 Introduction

Whilst modern computer graphics cards deliver extremely high floating point
performance for personal computer gaming, the same low cost consumer elec-
tronics hardware can be used for desktop (and even laptop) scientific applica-
tions [Owens et al., 2007]. However today’s GPUs are optimised for a single
program multiple data (usually abbreviated Single Instruction Multiple Data
SIMD) mode of operation. GPU also place severe limits on data flow. Porting
existing applications is non-trivial. Nevertheless [Fok et al., 2007] were able to
show speed ups from 0.62 to 5.02 when they ported evolutionary programming to
a GPU. They ran EP mutation, selection and fitness calculation on their GPU.
Each stage being done by fixed specially hand written GPU programs. [Harding
and Banzhaf, 2007] were able to show far higher (peak) speed ups when they
ran the fitness evaluation of cartesian genetic programming on a GPU. [Chitty,
2007] used Cg to precompile tree GP programs on the host CPU before transfer-
ring them one at a time to a GPU for fitness evaluation. Both groups obtained
impressive speed ups by running many test cases in parallel. We demonstrate a
SIMD interpreter which runs 204 800 programs simultaneously on the GPU on
one or more test cases.

A decade ago [Juille and Pollack, 1996] demonstrated a SIMD GP system
for a Maspar MP-2 super computer on a number of problems. The MP-2 was a
general purpose supercomputer, costing in the region of $105 in the mid 1990s.
Its peak theoretical performance came from its many thousands of processing
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No

Push onto individuals stacks

IF Addition
Pop+Pop, Push result

IF Subtraction
Pop−Pop, Push result

IF Multiply
Pop * Pop, Push result

IF Division
Pop/Pop, Push result

All programs finished? Yes

Result is on top of each stack

IF Leaf

Fig. 1. The SIMD interpreter loops continuously through the whole genetic
programming terminal and function sets for everyone in the population. GP
individuals select which operations they want as they go past and apply them
to their own data and their own stacks.

elements (PE) and the rapid bidirectional 2D data mesh interconnecting them.
Jullie’s coevolutionary problems were able to exploit the rapid transfer between
neighbouring PEs. Less than 200 MP-2 were sold whereas a successful GPU
typically has up to 128 independent processors and can be found in literally
millions of homes. Even a top of the range GPU can be had for about £350.

In GPUs data describing scenes are imagined to flow into the processors,
which transform them and transmit them onto the next processing stage (or
to the user’s screen). Typically recursion is not used. Part of the GPUs speed
comes from specialising this data stream and avoiding the possibility of expen-
sive side-to-side interaction. This restriction enables the GPU to schedule work
freely without user intervention between the available processors. Indeed adding
more processors can improve performance immediately without redesigning the
application. However it makes it difficult to do some operations. The GPU should
not be regarded as a “general purpose” computer. Instead it appears to be best
to leave some (low overhead) operations to the CPU of the host computer.

Previously the parallelism of GPUs has been exploited by evaluating an indi-
vidual’s fitness by running it simultaneously on multiple training examples. Here
we evaluate the entire GP population in parallel. Multiple training examples are
not needed. How is this possible on a Single Instruction Multiple Data com-
puter? Essentially the trick is to use one interpreter as the “single instruction”
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stream and treat the programs it interprets as “multiple data” items. Figure 1
shows the essential inner loop of the SIMD interpreter. The loop runs on every
computing element in the GPU. One complete cycle around the loop is used to
evaluate each leaf and function in the GP tree. E.g. five instructions (push +−×
and ÷) are needed for each primitive. In the SIMD interpreter, the role of the
interpreted data item is to select which of the five is used. (The results of other
four are discarded.) Effectively each GP individual acts as a sieve saying which
operation it wants performed next. Whilst this introduces a new overhead, use
of cond instructions to skip the four unwanted instructions and the speed of the
GPU makes our approach viable. The SIMD interpreter can support more than
four functions, but, in principle, the overhead increases with the size of the func-
tion set. While multi-ops, conditionals, loops, jumps, subroutines and recursion
are possible, they are not included in these benchmarks.

The next section discusses some other previous parallel GP systems. The
section following it discusses possible implementation avenues and why we chose
RapidMind. This is followed by descriptions of our two benchmarks (Sections 4
and 5). Whilst Section 6 describes the performance of the interpreter in prac-
tise and relates it to other work. This is followed by a discussion, future work
(Section 7) and our conclusions (Section 8).

2 Parallel Genetic Programming

While most GP work is conducted on sequential computers, the algorithm typi-
cally shares with other evolutionary computation techniques at least three com-
putationally intensive features, which make it well suited to parallel hardware.
1) Individuals are run on multiple independent training examples. 2) The fit-
ness of each individual could be calculated on independent hardware in parallel.
3) Lastly sometimes experimenters wish to assign statistical confidence to the
stochastic element of their results. This typically requires multiple independent
runs of the GP. The, comparative, ease with which EC can exploit parallel ar-
chitectures has lead to the expression “embarrassingly parallel”.

Early work includes Ian Turton’s use of a GP written in Fortran running
on a Cray super computer [Turton et al., 1996]. Koza popularised the use of
Beowulf workstation clusters where the population is split into separately evolv-
ing demes with limited emigration between compute nodes [Andre and Koza,
1996; Bennett III et al., 1999] or workstations [Page et al., 1999]. Indeed as
[Chong and Langdon, 1999; Gross et al., 2002] showed by using Java and the In-
ternet, the GP population can be literally spread globally. Alternatively JavaScript
can be used to move interactive fitness evaluation to the user’s own home but
retain elements of a centralised population [Langdon, 2004].

Others have used special purpose hardware. For example, while [Eklund,
2003] used a simulator, he was able to show how a linear machine code GP
might be run very quickly on a field programmable gate array using VHDL to
model sun spot data. However his FPGA architecture is distant from a GPU.
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512x400 floats

Population Fitness

Population

2048x2048 texture

2048 texture

error (204800 copies)

stack (204800 copies)

k, J, i, PC (204800)

Interpreter

Run 204800

Population

512x400 (16byte per program)

programs

time series
128+1200 floats

zeros

Fig. 2. Major data structures for Mackey-Glass. At the start of the run the
interpreter is compiled on the CPU (left hand side). It and the training data are
loaded onto the GPU (righthand side). Every generation the whole population
is transfered to the GPU. Each individual is interpreted using its own stack and
local variables (k, J, i, PC) and its RMS error is calculated. The error is is used
as the programs’ fitness. All transfers are made automatically by RapidMind.

In summary GP can and has been parallelised in multiple ways to take ad-
vantage both of different types of parallel hardware and of different features of
particular problem domains. We propose a new way to exploit the inherent par-
allelism available in modern low cost mass market graphics hardware. Towit a
GP SIMD interpreter for GPUs.

3 Programming Graphics Cards

Perhaps unsurprisingly the first uses of graphics processing units (GPUs) with
genetic programming were for image generation [Ebner et al., 2005] & its refs.

[Harding and Banzhaf, 2007, Section 3] described the various major high
level language tools for programming GPUs (Sh, Brook, PyGPU and microsoft
Accelerator). nVidia has two additional tools: CUDA and Cg (C for graphics
[Fernando and Kilgard, 2003]). CUDA is specific to nVidia’s GPUs. While Sh
[McCool and Du Toit, 2004] is still available from SourceForge, its development
is effectively frozen at Sh 0.8.0 and McCool recommends using its replacement
from RapidMind. Unlike Sh, RapidMind is not free, however www.rapidmind.net
issues licences, code, tutorials and documentation to developers. They host a
developers’ forum and offer prompt and effective support. Like Sh, RapidMind
is available for both microsoft directX and unix OpenGL worlds and is not tied
to a particular manufacturer’s GPU hardware. Indeed recently they started to
support parallel programming on the cell processor. However C++ code written
for RapidMind’s libraries is not portable to other systems. Another nice feature
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of RapidMind is that it frees the C++ programmer from the need to learn
graphics jargon and conceals many hardware limitations.

4 Mackey-Glass

The Mackey-Glass chaotic time series is described in [Langdon and Banzhaf,
2005b; Langdon and Banzhaf, -]. Briefly the GP is given historical data from a
series of 1200 points one time step apart and asked to predict the next value.
It is allowed to see data up to 128 time steps in the past. Figure 2 and Table 1
describe our implementation.

Table 1. GPU GP Parameters for Mackey-Glass time series prediction.

Function set: ADD SUB MUL DIV operating on floats
Terminal set: Registers are initialised with historical values of time series. D128 128

time steps ago, D64 64, D32 32, D16 16, D8 8, D4 4, D2 2 and finally D1
with the previous value. Time points before the start of the series are set
to zero (cf. zeros top of Figure 2). Constants 0, 0.01, 0.02, ... 1.27

Fitness: RMS error
Selection: fine grained binary tournament demes [Langdon, 1998], non elitist, Pop-

ulation size 512× 400
Initial pop: ramped half-and-half 1:3 (depth 1 to 3. 50% of terminals are constants)
Parameters: 50% subtree crossover. 50% mutation (point 22.5%, constants 22.5%, sub-

tree 5%). Max tree size 15, Max tree depth 4.
Termination: 50 generations

N
W O

S
X

Fig. 3. The GP population is spread one per grid square in two dimensions. If
North is better than Origin, it is copied over it. But if Origin is better, O is
copied over N. (No change if equally fit.) After selection, crossover may occur
between O and X. To promote mixing, 50% of crossovers swap which parent
supplies the root node, so a child produced by crossover is equally likely to
inherit its root from either parent. Also the neighbourhood pairing rotates 90◦

every generation. E.g. next generation, crossover will be between O and S.

4.1 Fine Grained Diffusion Model of Overlapping Demes

While it is not needed for operation with GPU, we used a fine grained diffusion
model of overlapping demes [Langdon, 1998], see Figure 3. This allows a low
selection pressure and ready visualisation, cf. Figure 4.
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Fig. 4. Screen shot of 512 × 400 GP population after 100 generations. Colour
indicates fitness (left) and syntax (right). Below are two histograms (log scale)
showing distribution of population by fitness and genotypic distance from the
first optimal solution. (Colour scales below each histograms.) Crossover is pro-
ducing large numbers of unfit leafs (vertical lines at 540 and 600) [Poli et al.,
2007]. Local convergence and the production of species is visible (esp. right). See
http://www.cs.ucl.ac.uk/staff/W.Langdon/pi2 movie.html and Google videos
for animation and more explanation.
4.2 Subtree Crossover and Mutation

In these experiments, the crossover and mutation rates were chosen so that all
of the next population are produced either by crossover or mutation (but not
both). This ensures almost all children are different from their parents.

Koza’s [Koza, 1992] crossover was implemented for linearised reverse polish
notation. However there is no bias towards using functions rather than terminals
as crossover points. If a pair of crossover points would cause either offspring to
be too big or too deep, both are rejected and a new pair chosen again.

One of three types of mutation are used: subtree mutation, point mutation
and constant creep mutation. In subtree mutation a subtree is chosen uniformly
at random and replaced with a subtree created by the ramped half-and-half
(depth 0:1, i.e. leaf or 1 function+2 leafs) algorithm used to create the initial
population. If the mutation point is already at the maximum depth, then the
subtree is replaced by a randomly chose leaf. If the mutant tree is too big it is
rejected and the mutation process restarted with a newly chosen mutation point.

Point mutation does not change the size or shape of the parent tree. A muta-
tion point is uniformly chosen and replaced by a function or leaf with the same
arity using the same random selection technique as was used in the initial pop-
ulation. Repeated mutations are applied until, the mutated tree is syntactically
different from its parent.

78

http://www.cs.ucl.ac.uk/staff/W.Langdon/pi2_movie.html


Table 2. Mackey-Glass prediction error after 50 generations in ten runs (mul-
tiplied by 128 as was used in [Langdon and Banzhaf, 2005a]).

Mean
RMS error×128 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69
Solution size 9 11 9 9 13 9 9 9 9 9 9.6
Run time secs 167.3 168.0 167.5 167.5 167.3 167.4 167.5 167.5 167.5 167.6 167.5

In constant creep mutation, one of the constant leafs in the tree is chosen
at random. (If there are no constants, point mutation is used instead.) It is
changed by just enough to give the next constant’s value. (I.e. by ±0.01 in the
Mackey-Glass experiments).

4.3 Mackey-Glass Model Accuracy

The results of ten independent GP runs on the GPU are summarised in Table 2.
The tight limit on tree size (15) and depth (4) lead to similar but smaller solu-
tions than those reported for tree GP [Langdon and Banzhaf, 2005a, Table 2].
In 4 of 10 cases the results are better than the ten FXO (i.e. the smallest and
fastest) subtree runs. The GPU GP runs are faster than all but two CPU runs
despite having a population more than 400 times as big and performing full
floating point calculations rather than 8 bit integer ones.

Table 3. GPU SIMD GP Parameters for protein localisation.

Function set: ADD SUB MUL DIV operating on floats
Terminal set: Number (integer) of each of the 20 amino acids in the protein. (Codes

B and Z are ambiguous. Counts for code B were split evenly between
aspartic acid D and asparagine N. Those for Z, between glutamic acid E
and glutamine Q.) 128 unique constants chosen from tangent distribution
(50% between -10.0 and 10.0)

Fitness: 1
2
True Positive rate + 1

2
True Negative rate [Langdon and Barrett, 2004]

Selection: fine grained binary tournament demes [Langdon, 1998], non elitist, Pop-
ulation size 1024× 1024

Initial pop: ramped half-and-half 2:5 (50% of terminals are constants)
Parameters: 50% subtree crossover. 50% mutation (point 22.5%, constants 22.5%, sub-

tree 5%). Max tree size 63, Max tree depth 8.
Termination: 1000 generations

5 Evolving a Million Individuals for 1000 Generations
Protein Location Prediction

The system was expanded to cope with: 1) a population of a million programs.
2) bigger trees. 3) deeper trees. 4) Randomised sub-selection of training cases.
(See Table 3.) The task chosen was to predict the location of proteins within
the cell given only their amino acid composition [Langdon and Banzhaf, -]
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[Harding and Banzhaf, 2007]. A 1024 by 1024 population of programs of up
to 63 tree elements and maximum depth of 8 was run on 200 of 1213 randomly
chosen proteins selected for training. Compared to [Langdon and Banzhaf, -, Ta-
ble 5], in terms of predictive accuracy on unseen proteins (cf. Figure 5) this run
produced better results than one technique (FXO) and the same accuracy but a
smaller solution than the other technique (two point crossover, 2XO). However
the main point is a graphics card can readily evolve millions of GP programs
over thousands of generations.
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Fig. 5. Fitness on 200 randomly chosen training cases in generation 1000, versus
fitness on 1200 unseen proteins The strong correlations shows GP has learnt for
random samples and (better yet) GP models have avoided over fitting.

6 Performance of SIMD Interpreter

6.1 Overhead of Opcode Selection

The interpreter’s performance is summarised in Table 4.
We wished to estimate the overhead of the SIMD loop scheduling all of the

primitives and then discarding the results of all but the 20% that are needed.
To do this we selected a typical evolved Mackey-Glass program and timed how
long it took the interpreter to run it. Secondly we hand build an version of the
interpreter specific for this program, where every operation is needed and no
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Table 4. Speed (millions GP operations/sec) of GPU interpreter on an nVidia
GeForce 8800 GTX. Terminal sets T include inputs and 128 constants.

Experiment |T | |F| Population program size test cases Speed (M GPops−1)

Mackey-Glass 8+128 4 204 800 11.0 1200 895
Mackey-Glass 8+128 4 204 800 13.0 1200 1056
Protein 20+128 4 1 048 576 56.9 200 504
Lasera 3+128 4 18 225 55.4 151 360 656
Laserb 9+128 8 5 000 49.6 376 640 190

results are discarded. Rather than the expected five to one ratio, the standard
SIMD interpreter is only 2.89 times slower than the specialised one.

A plausible explaination is that: on the GPU floating point operations such
as addition and multiplication, which form the GP function set, are extremely
fast. It is the GP terminals (which make up 54% of the program) which take
longer since they collect the data. The functions only manipulate data already
on the stack. This asymmetry in the costs of items in the SIMD dispatch loop
means the addition of a few very fast operations has proportionately less impact
than was expected.

Potentially this means we could expand the function set to include trigonom-
etry, log, exponentiation, etc. Many of these are directly implemented by the
GPU. While increasing the function set would not be free, the additional over-
head should be small.

6.2 GPU Speed up

The Mackey-Glass interpreter was recoded with minimum changes to run on the
CPU. A 2211MHz AMD Athlon 64 Processor 3500+ CPU evolved 50 gens of a
population of 204 800 trees in 1129.59 seconds. I.e. 7 times longer than the GPU.

7 Discussion

In previous work [Harding and Banzhaf, 2007] used the GPU exclusively for
running training cases for cartesian genetic programming and showed impres-
sive speed up in some cases but that improvement was highly variable. Indeed
using the GPU was slower than the CPU in a few cases. GP program size and
number of training examples per fitness evaluation appear to be critical. We have
shown a way of actually executing a traditional tree GP population on the GPU
card. It replaces the cost of compiling each member of the population on the
CPU by the overhead of running an interpreter on the GPU. Harding’s results
mostly show that the GPU gives a big performance gain where the compiled GP
program is run many times and the programs are large. However if programs
are run few times the cost of the compiler and transfer to the GPU may not
be repaid. There appears to be a nonlinearity (perhaps in the cost of starting
the compiler) so that the relatively small cost of running short programs ap-
pears large compared to the cost of compiling them and transferring them to
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the GPU. With our more traditional interpreter approach, the population is
transfered without compilation overhead to the GPU and the speedup from run-
ning in parallel on the GPU appears to be more consistent. We obtain a speed
up of more than an order of magnitude for very small programs.

7.1 Implementation Issues

We found that the GPU would give good performance if it was given reasonable
chunks of work to do. Say between 1 and 10 seconds. Then the time to transfer
the population and the training data into the GPU and fitness vector out is ok.

RapidMind on a Linux platform uses the GNU C++ compiler GCC and GDB
debugger. Unfortunately GCC’s error reporting can be hard to interpret since
RapidMind (like Sh) makes heavy use of templates. RapidMind’s cross compiler
for the GPU worked seamlessly.

In Sections 4 and 5 the interpreter explicitly loops through all the fitness
cases. The GPU can also vectorise computation across cases. We did this recently
for a small population and executed 50 000 cases×pop size in parallel. However,
we anticipate it usually remains better to loop through the test cases and so
reduce data communication and concentrate computation in fewer threads.

7.2 No protected division: Closure

Special cases, like divide by zero, are handled by non data values nan and inf.
The interpreter does not check for divide by zero. Undoubtedly this makes it
faster. In effect, the GPU’s floating point hardware supplies closure for us.

However we still need to be wary. Potentially large numbers of randomly
generated programs, or even offspring of evolved individuals, may have invalid
fitness. Filling the population with them may inhibit or even prevent GP suc-
cessfully evolving.

7.3 Reverse Polish Notation expression Stack Depth

The GPU does not allow arbitrary write access to large arrays. Indeed forcing
the data flow out of the GPU to be streamlined is required to enable tasks to
be easily shared between the 128 processors and so is partly responsible for the
GPUs speed. However it does make it difficult to implement a stack. Therefore
it was necessary to simulate a stack using joins. ([Ernst et al., 2004] suggest
a somewhat complicated way to implement a GPU stack. It requires at least
two passes. [Lefohn et al., 2006] use Cg to efficiently implement a stack. Neither
approach is feasible in RapidMind 2.0.1.) Joins work fine for small stacks. Indeed
with a stack depth of 4 the interpreter flew at more than a billion GP primitives
per second (speed up of more than 12). When the depth was doubled to 8 (for
the Mackey-Glass and protein prediction experiments) it imposed about a 30%
performance penalty. It appears that a stack limit of 12 or 16 would be feasible.
While this may seem restrictive, it is worth remembering that all the original
GP experiments [Koza, 1992] were conducted in Lisp with a depth limit of 17.
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7.4 Non-Tree GP, GP without a stack

If the compilation overhead is too heavy, our interpreter approach may be at-
tractive. It could be readily applied to cartesian GP [Harding and Banzhaf, 2007]
and to linear GP. Typically both approaches use a small number of registers and
do not require the use of a stack. Hence a linear genetic program could be inter-
preted directly on a GPU without incurring the stack overhead or consequent
depth limit.

We have deliberately limited ourselves to demonstrating a traditional tree GP
actually running on the GPU. We have been prepared to pay the overhead of
the instruction loop scheduling one thing at a time. However evolution can often
take advantage of muddled situations. We could imagine an evolutionary system
in which the program did not wait for exactly the next required instruction
to come around. But instead the program could say I will take the result of
several instructions, whichever is scheduled first. This might be implemented by
the interpreter looking for any bit in a bit mask being set, or an opcode lying in
some range, or some other form of fuzzy match between what the program wants
and what the interpreter is doing now. Of course the order of the actions of the
interpreter might also be evolved. While this form of coevolution is unlikely to
yield immediate speed ups on today’s problems, it might be a route to meta
evolution on more interesting problems in future.

7.5 Possible extensions

We have shown reliable speed ups can be obtained using a SIMD interpreter
to execute a GP population on the GPU. [Fok et al., 2007] have already shown
(albeit for EP) that a GPU can implement mutation and selection. Although
genetic programming mutation is more complex, we anticipate it too could be
implemented on the GPU. Indeed, although [Fok et al., 2007] shied away from
crossover, We expect GP crossover could also be performed by the GPU. As
GPUs continue to improve, the whole GP may be run by them.

8 Conclusions

By using a postfix (RPN) rather than a prefix (Lisp) representation, we have
replaced recursive calls by an explicit stack. Avoiding recursion and using cond
to select opcodes enabled us to run tree genetic programming with mega pop-
ulations actually on the GPU. Speed up depends on terminal set, training set
size, etc. but parallel operation can yield a speed up of 7–12. Typically a mod-
ern GPU interprets hundreds of millions of GP operations per second. Indeed
in one case, we exceeded a billion GP ops per second. This is about 0.1 peta
GP opcodes per day for $500.

The SIMD interpreter could be readily adapted to linear GP. Indeed a linear
GP system would avoid the overheads associated with simulating a stack. It
might be possible to extended it to other types of GP.
C++ code available ftp://cs.ucl.ac.uk/genetic/gp-code/gpu gp 1.tar.gz
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