
Evolving sqrt into 1/x via Software Data Maintenance
W. B. Langdon

Department of Computer Science,
UCL

London, UK
w.langdon@cs.ucl.ac.uk

Oliver Krauss
Johannes Kepler University,

AIST, University of Applied Sciences Upper Austria
Linz, Austria

oliver.krauss@fh-hagenberg.at

ABSTRACT
While most software automation research concentrates on pro-
grams’ code, we have started investigating if Genetic Improve-
ment (GI) of data can assist developers by automating aspects of
the maintenance of parameters embedded in source code. We ex-
tend recent GI work on optimising compile time constants to give
new functionality and describe the transformation of a GNU C
library square root function into the double precision reciprocal
function, drcp. Multiplying by 1/x (drcp) allows division free di-
vision without requiring the hardware to support division. The
evolution (6 seconds) and indeed the GI dp division (7.14±0.012 nS)
are both surprisingly fast.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering;

KEYWORDS
genetic programming, genetic improvement, Evolution Strategies,
Covariance Matrix Adaption - Evolution Strategy (CMA-ES), search
based software engineering, SBSE, software maintenance of empiri-
cal constants, data transplantation, glibc, IoT, double precision (dp),
reciprocal, drcp, rcp, invert, inv
ACM Reference Format:
W. B. Langdon and Oliver Krauss. 2020. Evolving sqrt into 1/x via Software
Data Maintenance. In Genetic and Evolutionary Computation Conference
Companion (GECCO ’20 Companion), July 8–12, 2020, Internet. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3377929.3398110

1 CONVENTIONAL DIVISION IS EXPENSIVE
On a modern 3.60GHz desktop double precision multiplication
takes a nanosecond, whereas double precision division takes about
4.0 times as long. For some systems which do not have floating
point division in hardware, e.g. MMM [21], the ratio may be big-
ger. Indeed, even in some cases with hardware division, the ratio
can be large. For example, on the ARM1176JZF-S (an ARM Vector
Floating-Point coprocessor) the ratio is 14.5 [1, VFP 1-19]. Mini-
mal systems, such as for internet-of-things (IoT) or ultra tiny mote
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’20 Companion, July 8–12, 2020, Internet
© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-7127-8/20/07. . . $15.00
https://doi.org/10.1145/3377929.3398110

computers [13] may not have the transistors or the power for con-
ventional hardware division.

We use genetic improvement operating on data to show search
can adapt existing embedded constants to repurpose existing open
source C code to give a software double precision implementa-
tion of reciprocal (drcp). Our table driven drcp takes only 2 Kbytes
(512 × 4bytes), which could be burnt into read-only memory (ROM)
and as such is well within the reach of many mote processors.

Not only can artificial evolution do this, but, when used incon-
junction with multiply, we get a table driven software implementa-
tion of division which on our 3.60 GHz desktop (7.14 ± 0.012 nS) is
only marginally slower than native 64 bit division.

We use the drcp function to show a new capability of GI in soft-
ware maintenance. The source code itself is manually adapted, but
the corresponding lookup table is automatically generated similar-
ily to how software can be maintained when updated values are
required, e.g. better approximations or changes in architecture from
32 bit to 64 bit.

The next section gives the background and shows, whilst Artifi-
cial Intellgence (AI) is increasingly used tomaintain software source
code, there is little research on maintaining numbers embedded
in programs themselves. For this particular example (sqrt{drcp),
Section 3 gives a brief introduction to iteratively finding a root of a
mathematical equation using Sir Isaac Newton and Joseph Raph-
son’s iterative solver. A short introduction to CMA-ES is provided in
Section 4. Whilst Section 5 describes the start point for this example:
a GNU C mathematics library routine, sqrt (which uses Newton-
Raphson), and how we use CMA-ES to evolve the data within it
to give a new double precision reciprocal function, drcp. Note the
evolved drcp does not use double precision division but can be used
to replace it. The discussion (Section 6) shows that our GI division
is accurate, and also considers possible future work. Finally, in Sec-
tion 7 we conclude that for some low resource computers (such as
for Internet of Things IoT [6] or approximate computing [55, 69])
the Genetic Improvement (GI) approach may help and that we have
demonstrated evolutionary computing (EC) tools are opening up
new approaches to automating software maintenance.

2 BACKGROUND:
AI FOR SOFTWARE MAINTENANCE

Although computing is without doubt the success story of the sec-
ond half of the twentieth century, at the beginning of the third
millennium we are faced with an IT industry which remains labour
intensive but not in the manufacture of the things but in look-
ing after intangible IP (intellectual property), principally software.
The lifetime cost of solid things, i.e. hardware, has fallen exponen-
tially [54]. However, there has been no such dramatic change in

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://aist.fh-hagenberg.at/index.php/en/team-2/oliver-krauss-2
http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://aist.fh-hagenberg.at/index.php/en/team-2/oliver-krauss-2
https://doi.org/10.1145/3377929.3398110
https://doi.org/10.1145/3377929.3398110

GECCO ’20 Companion, July 8–12, 2020, Internet W. B. Langdon and Oliver Krauss

the cost of intangibles. Whilst production of hardware has been
automated, software has not been automated and remains labour-
intensive. These differences between computers and the software
that runs on them has lead to very different maintenance regimes.

Forty years ago there were a (relatively) small number of large
computers and teams of technicians who performed regular “pre-
ventative maintenance” on them. Those days are long since past.
Nowadays the number of computers is vast, and their components
so tiny and interconnected that routine maintenance is no longer
attempted. Instead whole computers (never mind components) are
simply discarded when (part of them) fails. Contrast this with their
software.

Initially, computer hardware was very diverse, demanding new
software each time new hardware was commissioned. The advent
of high-level languages and near monopolies in computer manufac-
ture has lead to increasingly large volumes of software which can
and has been reused. This led to “immortal software” [45, page 30]
which has long outlived the computers it was originally developed
for. Surprisingly, the consolidation into a few hardware and operat-
ing system environments has not lead to a similarly stable software
industry. The economic pressure to be “first to market” has forced
hardware innovation to be concentrated in a few computer hard-
ware companies with fixed upgrade tram lines leading to users
being “locked in” [57]. However, for most software, the race to be
first continues to lead to great diversity in user programs.

The lack of automation in the software industry, online deploy-
ment and the economic necessity for software to be produced
quickly, has led to the rise of continuous deployment where new
software is inflicted on the user as quickly as possible. Innova-
tions in software production have fed the race to be first rather
than increasing software quality. The lack of automation and the
longevity of software have led to software maintenance becoming
the dominant cost of computing [14, 64].

Search based software engineering (SBSE) [25] uses AI tools
to tackle software engineering problems. Increasingly SBSE is be-
ing used not just to find solutions to software problems, but to
help software writers and maintainers by increasing the level of
automation [23, 50],[2]. Rather than generating totally new pro-
grams [28, 29, 46], we are now seeing AI being used to automatically
fix bugs [22, 47, 50] and improve existing software [71],[39, 61]. Ge-
netic Improvement (GI) [59–62] has been used to optimise run
time [39, 72], energy [10, 12, 66] and memory [73] efficiency, auto-
matically importing functionality from one program into another
[7, 49], growing new functionality and grafting it into another
[24, 27, 31, 38] and indeed porting to new hardware [37]. GI on
source code systems include GIN [70],[9] (Java), PyGGI [5] (multi-
ple languages) and GISMOE [32] (C). Although GI can be applied
to byte code [58], assembler [65] and indeed machine code [67],
mostly GI has been applied to program source code, with little
attention being paid to numbers embedded in software.

As well as external data to be processed, typically programs
contain not just computer instructions, but also data. These may be
float, int values or other types. For example, the GNU C library
contains more than a million integers, see Figure 1 (also [42]).1 The
1In addition to 1029 floating point constants, the PowerPC double precision sqrt .c
code contains 41 integer constants. E.g. logical values, error codes, array sizes and
hexadecimal bit masks.

 1

 10

 100

 1000

 10000

 100000

0 1 256 65536 16M 4G 1024G 256T 64Peta 16Exa

0 1 1000 1e6 1e9 1e12 1e15 1e18

c
o
u
n
t

number

0 1049738 positive integers
 32522 negative integers

Figure 1: Distribution of integer constants in the GNU C
library version 2.30 released 1 August 2019 (including test
suite). Note log scales. It contains 967 533 lines of C code,
which contain in total 1 234 449 integer constants. Zero is the
most commonoccurring in various formats a total of 152 189
times, followed by 1 (33 985) 2 (8 594) and -1 (8 324). Every in-
teger between -50 and 40 956 occurs at least once. There are
118 386 distinct integer constants. (To avoid overlap, positive
and negative values are slightly offset vertically.)

numbers can be integral to the source code itself, but may also relate
to the problem the program is solving, and as such may be subject
to change just like the rest of the program’s environment [36],
and so may need to be updated. The need to maintain data within
software, as well as the code itself, has been recognized for a long
time (Martin and Osborne, 1983 [52, Section 6.8]).

Although maintenance is the dominant cost of computing, a
recent survey [53] starts by saying “a relatively small amount [of
SBSE research] is related to softwaremaintenance”, whilst de Freitas
and de Souza [15] do not give a break down of the search based
software engineering literature on software maintenance. Indeed
there is little SBSE research on maintaining embedded numbers.

There is a little research on tuning of embedded parameters,
Wu et al. [73]’s Deep Parameter Optimisation (DPO) work being
the first example. They used DPO to adjust a few parameters to
reduce runtime and memory. However, unlike DPO [11, 68, 73], we
focus on adapting many numerical values to give better programs
or indeed (as here) new functionality.

The ViennaRNA package [48] uses more than 50 000 free energy
values. Recently we showed that genetic improvement can adapt
these 50 000 int values to find a new program which on thousands
of real examples gave predictions which were on average 11% more
accurate [35].

We showed that evolution could update thousands of embedded
constants to give new functionality [35, 43]. In [43] we argued
that the technique could be widely applied and have applied it
to generating log2 [44] and 1√

x
[33]. We now use it to evolve a

double precision division operator without division. We provide
double precision division, x/y, as x × (1/y), i.e. x × drcp(y). Where
drcp(x) = 1/x is the double precision reciprocal or invert function.

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://aist.fh-hagenberg.at/index.php/en/team-2/oliver-krauss-2

Evolving sqrt into 1/x via Software Data Maintenance GECCO ’20 Companion, July 8–12, 2020, Internet

3x 4x

x

Figure 2: First iteration of Newton-Raphson to approximate
root f (x)=0 of a function, thick blue line. f ′(x1) is the deriv-
ative of f at x1 (thin red line). Following it gives x2 where it
crosses the horizontal line y = 0, x2 = x1 −

f (x1)
f ′(x1)

. Here x2 is
closer than x1 to the root. The next iteration starts at x2 to
give x3 = x2 −

f (x2)
f ′(x2)

. In this example x3 over shoots but x4 is
close and x5 is almost exact.

Figure 3: IEEE 754 Double-precision floating-point format.
Notice sign (bit 63, light blue) is zero for positive numbers.

3 NEWTON-RAPHSON
Next we describe the mathematical background used by the open
source software (sqrt, Section 5) we use as a start point for GI.

Newton-Raphson is an iterative way of finding the roots (zero
crossing points) for continuous differentiable functions, see Fig-
ure 2. Under ideal conditions it converges quadratically fast. Thus if
we start with an 8 bit approximation, the next iteration is accurate
to 16 bits, the second 32 bits and the third to 64 bits. Since double
precision (see Figure 3) gives 52 bit accuracy, only three Newton-
Raphson cycles are needed. Classically, each Newton-Raphson it-
eration includes testing to see if the new approximation is close
enough and stopping when the error is small enough. For speed, in
the GNU e_sqrt.c code, the test is omitted and it simply does three
iterations and stops.

Using Newton-Raphson to find f (x) = 0, see Figure 2. We need
a guess for the initial value for x , x1. The initial error is:

error = f (x1) − 0

The next estimate, x2, is given by updating x1 by the error divided
by the gradient (derivative) of f (x), f ′(x)

x2 = x1 − error/f ′(x1)

= x1 −
f (x1)
f ′(x1)

Generalising, for the (n + 1)th step

xn+1 = xn −
f (xn)

f ′(xn)

The GNU C library sqrt code contains a table of 512 (29) values
for x1 (and another 512 holding initial values for the derivative, see
next paragraph). The table is indexed by a 9-bit integer (0. . . 511) ex-
tracted using bit shifts and masks from the double format number,
Figure 3. Each start point x1 is accurate to within eight bits and so
three iterations will give double precision accuracy. (Since initially
only 8-bit precision is needed, the 512 pairs of initial values can be
stored as float rather than double.)

In the case of sqrt f (x) = x2 − a. Note when f (x) = 0 then
x = a

1
2 . To use multiplication instead of division, the GNU C library

sqrt code keeps an estimate of 1
f ′(x) which is also updated at each

Newton-Raphson iteration.
In our case (the reciprocal function) f (x) = x−1 − a and so

f ′(x) = −x−2 :

f (xn)

f ′(xn)
= −f (xn)x

2
n

= −

(
x−1n − a

)
x2n

= −xn + a x
2
n (1)

Since x2 is easily calculated, for drcp (unlike sqrt) we do not main-
tain an estimate for the reciprocal of the derivative. Therefore this
part of e_sqrt.c was removed and x2 was used instead (see Sec-
tion 5.1).

4 COVARIANCE MATRIX ADAPTION -
EVOLUTION STRATEGY (CMA-ES)

CMA-ES is an evolutionary algorithm used to solve n-dimensional
continuous numerical problems. It has been shown to work for
global and local optimization [20]. The algorithm evolves a popu-
lation represented as a covariance matrix around a centroid. The
centroid guides the evolutionary search by evolving a probability
distribution. A standard deviation that is continously and automat-
ically updated during the run guides the mutation. The crossover
happens by combining several individuals to new points in the co-
variance matrix. CMA-ES implicitly implements the crossover and
mutation operators as they are directly tied to the core covariance
matrix. CMA-ES does not require extensive parameter tuning, as
all values for the operators are updated at regular intervals around
the centroid [20].

CMA-ES can be provided with an initial configuration, such as
the initial standard deviation and centroid. This only serves to speed
up the algorithm to moving closer to an already expected or known
optimum [20].

GECCO ’20 Companion, July 8–12, 2020, Internet W. B. Langdon and Oliver Krauss

5 EVOLVING 1/x FROM GNU POWERPC
√
x

We use an existing table driven implementation of the square root
function (Figure 4 left) and use genetic improvement to evolve the
reciprocal function (Figure 4 right). This is achieved by mutating
the constant values in the chosen code for square root.

The GNU C library (release 31 Jan 2019 glibc-2.29) was used.2
It contains multiple implementations of the square root function
(sqrt). As before [43], we selected sysdeps/powerpc/fpu from the
PowerPC implementations as it uses table lookup [51] (Figure 5).
Again we adapted the GNU open source C code by hand and used
Hansen’s CMA-ES [20] (see previous Section 4) to evolve the literals
supplied by GNU for the square root function so that the code now
calculates drcp.

5.1 Manual changes
A few small codemodifications are needed before running evolution
on the data table (contrast Figures 5 and 6).

• Negative numbers are caught before entering the main code.
However, unlike sqrt, an error is not raised but instead −x is
passed to the main code and its result is negated. Thus, the
main code does not deal with negative numbers.

• The construction of the nine bit indexing operation is essen-
tially unchanged, but it must take into account that the table
contains 512 floats not 512 pairs of floats (Figure 6).

• The code to maintain the estimate of the reciprocal of the
derivative can be commented out.

• The new formula (Eq. 1) for the Newton-Raphson step is
used three times.

• The GNU sqrt code deals with the exponent separately from
the fractional (mantissa) part (Figure 3). To take the square
root of the exponent, it is divided by two using a 1 bit shift
right (left part Figure 5). For x−1 the exponent part must be
negated. Since the IEEE 754 standard uses 11 unsigned bits
to represent the exponent, the new code subtracts it from
the mid point (1023 = 211/2 − 1) giving the exponent of
the result (left part Figure 6). That is, the new code replaces
masks and shift by masking and subtraction.

• The sqrt code deals with denormalised numbers (i.e. when
the exponent part is zero, x < 2−1023, see Figure 3) by multi-
plying by a large number and recursively calling itself and
then adjusting the returned value appropriately. Except for
using 254, the new drcp is identical.
It multiplies the tiny value x by 254. The drcp code is recur-
sively called with the new (now normalised double precision
value). The output will be 2−54 times too small and so the cor-
rect final value is obtained by multiplying by 254. That is, the
only code change is that the e_sqrt.c macros two108 = 2108
and twom54 = 2−54 are both replaced by two54 = 254.

5.2 Automatic changes to data table using CMA-ES
The GNU __t_sqrt table contains 512 pairs of floats. The first of
each pair was used as the starting points when evolving the 512
floats in the new table, see horizontal axis Figure 9. The float values

2 https://ftp.gnu.org/gnu/glibc/glibc-2.29.tar.gz

found by CMA-ES are shown by the vertical axis of Figure 9, also
Figure 10.

CMA-ES was downloaded from https://github.com/cma-es/
c-cmaes/archive/master.zip It was set up to fill the table of 512
floats one at a time. In all cases, the initial mutation step size used
by CMA-ES was set to 3.0 times the standard deviation calculated
from the 512 x1 values in __t_sqrt.

5.2.1 CMA-ES parameters. The CMA-ES defaults
(cmaes_initials.par) are used, except for: the problem size (N=1),
the initial values and mutation sizes are loaded from __t_sqrt (see
previous section), and stopFitness, stopTolFun, stopTolFunHist and
stopTolX, which control run termination, were set to zero to ensure
CMA-ES tries to get a perfect fitness (see next section).

5.2.2 CMA-ES Fitness function. Each time CMA-ES proposes a
double value, it is converted into a float and loaded into the table
at the location that CMA-ES is currently trying to optimise. For
each of the 512 table entries, the fitness function uses three test
points: the lowest value for the table entry, the mid point and the
top most value. For simplicity, all the fitness test points are in the
range 1.0 to 2.0. The invert function drcp that CMA-ES is trying to
create is called (using the updated table) for each fitness test point
and a sub-fitness value calculated with each of the three returned
doubles. The sub-fitnesses are combined by adding them.

Sub-fitness is calculated by taking CMA-ES’s drcp output and in-
verting it (using 1.0/x). If the evolved value was correct, the answer
would be the same as the test input value. (Effectively the fitness
function is using metamorphic testing [8], which avoids having a
test oracle which knows in advance the desired answer for every
fitness test case.) Sub-fitness is based on the absolute difference
between these. If they are the same or very close, the sub-fitness is 0.
We define “very close” to mean the difference is less than either the
difference calculated when inverting a number very slightly smaller
than CMA-ES’s drcp’s output or when inverting a number very
slightly bigger. “Slightly” meaning to the best double precision accu-
racy, i.e. multiplied or divided by (1 + DBL_EPSILON) = (1 + 2−52).
(DBL_EPSILON in C is the minimal value which when added to 1.0
which results in a different double value.)

If the output from the evolved drcp is not close enough, the
sub-fitness is positive. When drcp is working well the differences
are very small, therefore they are re-scaled for CMA-ES, although
this may not be essential [30]. If the absolute difference is less than
one, its log is taken, otherwise the absolute value is used. However,
in both cases, to prevent the sub-fitness being negative, log of the
smallest feasible non-zero difference DBL_EPSILON is subtracted.

CMA-ES will stop when the fitness is zero, i.e. the errors on all
three test points are close enough to zero.

5.2.3 Restart Strategy. If CMA-ES fails to find a value for which
all three test cases are ok, it is run againwith the same initial starting
position and mutation size, but a new pseudo random number seed.
In 467 cases CMA-ES found a suitable value in one run, but in 39 of
512 cases it was run twice, and in 6 cases three CMA-ES runs were
needed. This shows that the selected fiteness function is robust,
finding the global optimum in all cases. However we still require
some restarts due to the stochastic nature of the approach.

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://aist.fh-hagenberg.at/index.php/en/team-2/oliver-krauss-2
https://ftp.gnu.org/gnu/glibc/glibc-2.29.tar.gz
http://cma.gforge.inria.fr/cmaes_sourcecode_page.html#C
https://github.com/cma-es/c-cmaes/archive/master.zip
https://github.com/cma-es/c-cmaes/archive/master.zip
https://en.wikipedia.org/wiki/Metamorphic_testing

Evolving sqrt into 1/x via Software Data Maintenance GECCO ’20 Companion, July 8–12, 2020, Internet

 0

2e+153

4e+153

6e+153

8e+153

1e+154

1.2e+154

1.4e+154

-1.5e+308 -5e+307 0 5e+307 1.5e+308

sqrt(x)

-1.5e+308

-1e+308

-5e+307

 0

5e+307

1e+308

1.5e+308

-1.5e+308 -5e+307 0 5e+307 1.5e+308

drcp(x)

Figure 4: Left: Double precision square root, sqrt(x),
√
x . Right: Double precision reciprocal, drcp(x), 1/x . Note in both plots the

horizontal axis covers the full range of double precision numbers and the two functions give very different outputs (y-axis).

right shift by 1 bit
Division by 2

sign=0

9 bit index into 512 item table

start x start 1/2x

__t_sqrt

9 bit
index

Figure 5: Left: e_sqrt.c uses right shift of exponent of pos-
itive double (bit 63 = 0) to a) divide exponent by two and
b) merge least significant bit with top 8 bits of fractional
(mantissa) part to give nine bit index. Right: index usedwith
float __t_table containing 512 x1 and 1/2x1 pairs of initial
values for Newton-Raphson iterative solution of

√
x .

1023 − x
Negate by

sign=0

9 bit index into 512 item table

9 bit index into

start x

512 item table

__t_drcp

Figure 6: GI drcp. Left: to negate the exponent of positive
double (11 bit twos complement integer), drcp subtracts it
from 1023. drcp uses the top 9 bits of fractional (mantissa)
part give a nine bit index. Right: index used with float
__t_drcp of initial values for Newton-Raphson iterative so-
lution of 1

x .

It took 6 seconds to run CMA-ES 563 times on one core of a
3.60GHz i7-4790 Intel desktop computer. The search effort is given
in Figures 7 and 8. The values input to CMA-ES and those output
by it are given in Figures 9 and 10.

 0

 32

 64

 96

 128

 160

 192

 224

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

C
M

A
-E

S
 f

u
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s
 f

o
r

d
rc

p

x

ok
restart

Figure 7: CMA-ES is very good at finding 512 new start
points for x−1 when starting with data for x

1
2 . (Mean 45.6 fit-

ness evaluation.) All but 1 of the 51 of the runs which were
restarted (×) are for x > 1.5 indicating some correlation with
change to initial seed value (Figure 9).

5.3 Testing the evolved drcp function
The glibc-2.29 powerPC IEEE754 table-based double sqrt func-
tion claims to produce answers within one bit of the correct solu-
tion. Our drcp also achieved this. On 1 543 tests of large integers
(≈ 1016) designed to test each of the 512 bins three times (min, max
and a randomly chosen point) the largest discrepancy between
1/drcp(x) and x was two, i.e. a maximum fractional error 1.9 10−16
≈ DBL_EPSILON.

The evolved drcp was also tested with 5 120 random numbers
uniformly distributed between 1 and 2 (the largest deviation was
two3), 5 120 random scientific notation numbers and 5 120 random
64 bit patterns. Half the random scientific notation numbers were

32 at the least significant part of IEEE754 double precision corresponds to 4.44 10−16 .

GECCO ’20 Companion, July 8–12, 2020, Internet W. B. Langdon and Oliver Krauss

 0

 10

 20

 30

 40

 50

 60

 0 32 64 96 128 160 192 224

N
u

m
b

e
r

o
f

d
rc

p
 C

M
A

-E
S

 r
u

n
s

CMA-ES function evaluations for drcp

ok mean 35.6
restart

Figure 8: Histogram (bin size 4) of number fitness evalua-
tions per run for successful runs (solid line) and for 51 runs
which did not find an acceptable solution immediately (blue
dashed line). Data as Figure 7.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

C
M

A
-E

S
 o

u
tp

u
t

CMA-ES seeded from sqrt_t

x
Evolved value

Figure 9: Evolved change from sqrt table values (horizontal
axis) to corresponding inv table value (vertical axis). 512 suc-
cessful CMA-ES runs. The diagonal blue dotted line shows
no change, y=x.

negative and half positive. In absolute value, half were smaller than
one and half larger. The exponent was chosen uniformly at random
from the range 0 to |308|.

In one case a random 64 bit pattern corresponded to Not-A-
Number (NAN) and drcp correctly returned NAN. In five cases
random 64 bit pattern corresponded to numbers either bigger than
21023 or smaller than −21023. For these drcp correctly returned 0
(or -0). In most cases drcp returned a double, which when inverted
was its input or within one bit of it. Barring the six special binary
patterns, the maximum deviation was 2, i.e. 4.44 10−16 as a fraction.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

E
v
o

lv
e

d
 N

e
w

to
n

-R
a

p
h

s
o

n
 t

a
b

le
 v

a
lu

e

Normalised input to drcp(x) (IEEE 754 bits 51:43)

CMA-ES
Theory

Figure 10: 512 GI table values for drcp x−1. They are shown
plotted against normalised x input to 1/x (horizontal axis),
and corresponding inv table value (vertical axis).

6 DISCUSSION
6.1 Sufficient Testing?
Although it is well-known that testing cannot prove correctness [17],
in keepingwith the IT industry as a whole (indeed the GNU develop-
ers themselves, see Section 6.3), we have sought to demonstrate our
evolved implementation using testing (see Section 5.3). Excluding
tests for exceptions such as denormalised numbers and range errors,
the code is straight through with no loops or branches and drcp (in
the range of interest, 1.0 to 2.0) is monotonic and smooth. We have
shown this main code yields correct double precision answers thou-
sands of times, including covering all 512 data bins multiple times,
including their edges. (Indeed a proof, following Markstein [51],
might be possible.) We can thus be reasonably confident of the GI
code in normal operation.

Although the testing has covered some special cases, it is notice-
able that the GNU mathematics library developers have included
almost as many tests for exceptions as for normal cases. We have
been concerned primarily with normal operation and not attempted
to use the glibc exception handling code. Therefore if our evolved
drcp were to be included in glibc they might well want to satisfy
themselves that non numeric inputs such as nan, +inf and -inf
are also dealt with correctly. Similarly additional testing might be
used when dealing with non-normalised numbers, cf. Section 5.1,
especially as this is the only instance of recursive code.

6.2 Originality, Utility and Scope for
Disruption of Software Engineering

As the literature review in Section 2 makes clear this is an under
explored area and yet Evolutionary Computation (EC) can some-
times rapidly produce useful results (here with a run time of a few
seconds). By working with software maintainers, EC-based AI data
maintenance tools could make a significant dent in the software
maintenance mountain.

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://aist.fh-hagenberg.at/index.php/en/team-2/oliver-krauss-2

Evolving sqrt into 1/x via Software Data Maintenance GECCO ’20 Companion, July 8–12, 2020, Internet

Our evolved double precision division x/y = x × drcp(y) is po-
tentially competitive on processors where division is slow. In par-
ticular, if division is slower than multiplication by a ratio of more
than 8, multiplication by the evolved double precision recipro-
cal, drcp, will be faster than division. For example, there are some
processors (see Section 1) where the time to do double precision
division is more than 14× the time to do double precision multi-
plication, e.g. ARM1176JZF-S [1]. On such hardware x × drcp(y)
would be faster than x/y.

As before [43], we have only updated the read-only data table.
Comments in the GNU PowerPC C source code make the point that
a skilled software designer chose the interleaving of the instructions
to maximise performance on the PowerPC. Since we desire to make
our description as complete as possible for a scientific audience,
cf. Section 5.1, we have gone into perhaps more detail than is needed
and so perhaps given the impression that the Newton-Raphson code
is more complex than it actually is. In practice, the GNU sqrt code
can be easily adapted. Secondly, for speed, the code uses a data-
driven approach for the Newton-Raphson derivative. Both of these
were manual choices by the GNU programmers for the PowerPC.
Future research might investigate using genetic improvement on
the code in order to see if this is optimal on other computers, if the
data-derivative approach should be used in drcp, or if GI can find
other optimisations.

The bulk of software maintenance is routine and tedious, al-
though in some cases it may require highly skilled experts [16,
page 65]. In either case, the available human resources may already
be stretched thin. Thus partial automation via AI can be useful,
even (as is shown in [35]) for high skill requirements.

6.3 Future work:
GI Autoport Test Cases and Test Oracles

The GNU C library includes more than 6000 extensive test suites.
These include the square root test cases, of 599 individual tests. Like
other glibc math functions, they are used for complex numbers (i.e.,
with real and imaginary parts), different precisions (long double,
double, float etc.) and inlined and noninlined code. Just concen-
trating upon testing sqrt() (i.e. double), the tests are executed 1360
times (plus 1348 tests for errors and exceptions). Although AI has
made considerable progress in generating test cases to exercise
code [4, 19] usually this relies on implicit oracles [8, 26, 34, 56, 63]
(such as: does the test cause the code to crash with a null pointer
exception?), or approximate oracles such as: does the output include
strings such as “error”, “problem” or “exception” [18, page 262]? We
have used traditional manual testing to demonstrate our drcp, how-
ever, what if we were to use not just the existing implementation
but the existing test suite and use it to test the new functionality?
How much adaptation of the tests would be need? How much of
this could be automated? Would genetic improvement be able to
evolve existing test cases and their test oracles? The little work on
automatic test case porting [74] and the presence of thousands of
test suites with hundreds tests and their test oracles makes using GI
to transplant glibc test suites a tempting target for future research.

7 CONCLUSIONS
The cost of software maintenance is staggering. Although sup-
port tools are common place, it remains an essentially tedious
error prone manual process with little existing evolutionary com-
puting (EC) research. Indeed, although recognised since the early
1980’s, there is little research on automatic ways to maintain nu-
meric values even though this is an important part of software
maintenance. Figure 1 shows an example of important long lived
software which contains a large number of embedded constants.

Most EC software engineering research has concentrated upon
source code. Although we already have a few examples of GI pro-
grams in use and under regular software maintenance [40] [41]
[22] [3, 50], there is a fear that some in the IT industry might be
resistant to AI automated source code improvement. Since software
developers care about their source code, potentially, by concentrat-
ing automatic updates on parameters within code, rather than the
instructions, it may be that they will be more accepting of evolved
artefacts.

Previously we showed one example where evolutionary compu-
tation was used to improve the accuracy of an existing program by
automatically maintaining numeric values within it. More recently
we showed an example where EC was used to transplant data to
give new functionality. We claimed at the time that the approach
was more general and here we have further demonstrated it to give
a double precision implementation of division. Although primarily
a further demonstration of the power of the approach, in some
cases, particularly for internet-of-things mote low resource com-
puting (or approximate computing), the evolved implementation
could be competitive.

Acknowledgements
We are grateful for the assistance of Justyna Petke, Roy Longbottom
and our anonymous reviewers. Also we would like to acknowledge
Wikipedia (Figures 2, 3, etc.) and thank Simon Tatham for PuTTY.

Funded by EPSRC GGGP and InfoTestSS grants EP/M025853/1
EP/P005888/1.
A replication package is available via DOI: https://doi.org/
10.5281/zenodo.3755346 on GitHub https://github.com/
oliver-krauss/Replication_GI_Division_Free_Division

REFERENCES
[1] 2009. ARM1176JZF-S Technical Reference Manual (revision: r0p7 ed.).

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/DDI0301H_
arm1176jzfs_r0p7_trm.pdf

[2] John Ahlgren et al. 2020. WES: Agent-based User Interaction
Simulation on Real Infrastructure. In GI @ ICSE 2020, Shin Yoo
et al. (Eds.). https://research.fb.com/wp-content/uploads/2020/04/
WES-Agent-based-User-Interaction-Simulation-on-Real-Infrastructure.pdf
Invited Keynote.

[3] Nadia Alshahwan. 2019. Industrial experience of Genetic Improvement in Face-
book. In GI-2019, ICSE workshops proceedings, Justyna Petke et al. (Eds.). IEEE,
Montreal, 1. http://dx.doi.org/10.1109/GI.2019.00010 Invited Keynote.

[4] Nadia Alshahwan et al. 2018. Deploying Search Based Software Engineering
with Sapienz at Facebook. In SSBSE 2018 (LNCS), Thelma Elita Colanzi and Phil
McMinn (Eds.), Vol. 11036. Springer, Montpellier, France, 3–45. http://dx.doi.org/
10.1007/978-3-319-99241-9_1

http://www.cs.ucl.ac.uk/staff/J.Petke/
http://www.roylongbottom.org.uk/
https://en.wikipedia.org/wiki/Newton%27s_method#/media/File:NewtonIteration_Ani.gif
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/M025853/1
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://doi.org/10.5281/zenodo.3755346
https://doi.org/10.5281/zenodo.3755346
https://github.com/oliver-krauss/Replication_GI_Division_Free_Division
https://github.com/oliver-krauss/Replication_GI_Division_Free_Division
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/DDI0301H_arm1176jzfs_r0p7_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/DDI0301H_arm1176jzfs_r0p7_trm.pdf
https://research.fb.com/wp-content/uploads/2020/04/WES-Agent-based-User-Interaction-Simulation-on-Real-Infrastructure.pdf
https://research.fb.com/wp-content/uploads/2020/04/WES-Agent-based-User-Interaction-Simulation-on-Real-Infrastructure.pdf
http://dx.doi.org/10.1109/GI.2019.00010
http://dx.doi.org/10.1007/978-3-319-99241-9_1
http://dx.doi.org/10.1007/978-3-319-99241-9_1

GECCO ’20 Companion, July 8–12, 2020, Internet W. B. Langdon and Oliver Krauss

[5] Gabin An et al. 2019. PyGGI 2.0: Language Independent Genetic Improvement
Framework. In Proceedings of the 27th Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering
ESEC/FSE 2019), Sven Apel and Alessandra Russo (Eds.). ACM, Tallinn, Estonia,
1100–1104. http://dx.doi.org/10.1145/3338906.3341184

[6] Kevin Ashton. 2009. That ’Internet of Things’ Thing. RFID journal (June
22 2009). http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%
20Things%20Thing.pdf

[7] Earl T. Barr et al. 2015. Automated Software Transplantation. In International
Symposium on Software Testing and Analysis, ISSTA 2015, Tao Xie and Michal
Young (Eds.). ACM, Baltimore, Maryland, USA, 257–269. http://dx.doi.org/10.
1145/2771783.2771796 ACM SIGSOFT Distinguished Paper Award.

[8] Earl T. Barr et al. 2015. The Oracle Problem in Software Testing: A Survey. IEEE
Transactions on Software Engineering 41, 5 (May 2015), 507–525. http://dx.doi.
org/109/TSE.2014.2372785

[9] Alexander E. I. Brownlee et al. 2019. Gin: genetic improvement research made
easy. In GECCO ’19, Manuel Lopez-Ibanez et al. (Eds.). ACM, Prague, Czech
Republic, 985–993. http://dx.doi.org/10.1145/3321707.3321841

[10] Bobby R. Bruce. 2015. Energy Optimisation via Genetic Improvement A SBSE
technique for a new era in Software Development. In Genetic Improvement 2015
Workshop, William B. Langdon et al. (Eds.). ACM, Madrid, 819–820. http://dx.doi.
org/10.1145/2739482.2768420

[11] Bobby R. Bruce et al. 2016. Deep Parameter Optimisation for Face Detection Using
the Viola-Jones Algorithm in OpenCV. In Proceedings of the 8th International
Symposium on Search Based Software Engineering, SSBSE 2016 (LNCS), Federica
Sarro and Kalyanmoy Deb (Eds.), Vol. 9962. Springer, Raleigh, North Carolina,
USA, 238–243. http://dx.doi.org/10.1007/978-3-319-47106-8_18

[12] Nathan Burles et al. 2015. Object-Oriented Genetic Improvement for Improved
Energy Consumption in Google Guava. In SSBSE (LNCS), Yvan Labiche and
Marcio Barros (Eds.), Vol. 9275. Springer, Bergamo, Italy, 255–261. http://dx.doi.
org/10.1007/978-3-319-22183-0_20

[13] Keith C. Clarke. 2003. Geocomputation’s future at the extremes: high performance
computing and nanoclients. Parallel Comput. 29, 10 (2003), 1281–1295. http:
//dx.doi.org/10.1016/j.parco.2003.03.001

[14] James S. Collofello and Jeffrey J. Buck. 1987. Software Quality Assurance for
Maintenance. IEEE Software 4, 5 (Sep 1987), 46–51. http://dx.doi.org/10.1109/MS.
1987.231418

[15] Fabricio Gomes de Freitas and Jerffeson Teixeira de Souza. 2011. Ten Years of
Search Based Software Engineering: A Bibliometric Analysis. In Third Interna-
tional Symposium on Search based Software Engineering (SSBSE 2011) (LNCS),
Myra B. Cohen and Mel O Cinneide (Eds.), Vol. 6956. Springer, Szeged, Hungary,
18–32. http://dx.doi.org/10.1007/978-3-642-23716-4_5

[16] Sayed Mehdi Hejazi Dehaghani and Nafiseh Hajrahimi. 2013. Which Factors
Affect Software Projects Maintenance Cost More? Acta Informatica Medica 21, 1
(Mar 2013), 63–66. http://dx.doi.org/10.5455/AIM.2012.21.63-66

[17] E. W. Dijkstra. 1969. “Testing shows the presence, not the absence of bugs.” in
Software Engineering Techniques: Report of a conference sponsored by the NATO
Science Committee (Robert M. McClure, 2001 ed.). NATO, Scientific Affairs
Division, Brussels, Rome, Italy, Chapter 3.1, 16. http://homepages.cs.ncl.ac.uk/
brian.randell/NATO/nato1969.PDF

[18] Anna I. Esparcia-Alcazar et al. 2018. Using genetic programming to evolve
action selection rules in traversal-based automated software testing: results
obtained with the TESTAR tool. Memetic Computing 10, 3 (Sept. 2018), 257–265.
http://dx.doi.org/10.1007/s12293-018-0263-8

[19] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite genera-
tion for object-oriented software. In 8th European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE ’11). ACM, Szeged, Hungary, 416–419. http://dx.doi.org/10.1145/
2025113.2025179

[20] Nikolaus Hansen and Andreas Ostermeier. 2001. Completely Derandomized
Self-Adaptation in Evolution Strategies. Evolutionary Computation 9, 2 (Summer
2001), 159–195. http://dx.doi.org/10.1162/106365601750190398

[21] Scott Hanson et al. 2009. A Low-Voltage Processor for Sensing Applications With
Picowatt Standby Mode. IEEE Journal of Solid-State Circuits 44, 4 (April 2009),
1145–1155. http://dx.doi.org/10.1109/JSSC.2009.2014205

[22] Saemundur O. Haraldsson et al. 2017. Fixing Bugs in Your Sleep: How Genetic
Improvement Became an Overnight Success. In GI-2017, Justyna Petke et al. (Eds.).
ACM, Berlin, 1513–1520. http://dx.doi.org/10.1145/3067695.3082517 Best paper.

[23] Mark Harman et al. 2012. The GISMOE challenge: Constructing the Pareto
Program Surface Using Genetic Programming to Find Better Programs. In The
27th IEEE/ACM International Conference on Automated Software Engineering (ASE
12). ACM, Essen, Germany, 1–14. http://dx.doi.org/10.1145/2351676.2351678

[24] Mark Harman et al. 2014. Babel Pidgin: SBSE Can Grow and Graft Entirely New
Functionality into a Real World System. In Proceedings of the 6th International
Symposium, on Search-Based Software Engineering, SSBSE 2014 (LNCS), Claire
Le Goues and Shin Yoo (Eds.), Vol. 8636. Springer, Fortaleza, Brazil, 247–252.
http://dx.doi.org/10.1007/978-3-319-09940-8_20 Winner SSBSE 2014 Challange

Track.
[25] Mark Harman and Bryan F. Jones. 2001. Search Based Software Engineering.

Information and Software Technology 43, 14 (Dec. 2001), 833–839. http://dx.doi.
org/10.1016/S0950-5849(01)00189-6

[26] Gunel Jahangirova et al. 2016. Test Oracle Assessment and Improvement. In
Proceedings of the 25th International Symposium on Software Testing and Analysis
(ISSTA’16). ACM, Saarbruecken, Germany, 247–258. http://dx.doi.org/10.1145/
2931037.2931062

[27] Yue Jia et al. 2015. Grow and Serve: Growing Django Citation Services Using
SBSE. In SSBSE 2015 Challenge Track (LNCS), Shin Yoo and Leandro Minku
(Eds.), Vol. 9275. Springer, Bergamo, Italy, 269–275. http://dx.doi.org/10.1007/
978-3-319-22183-0_22

[28] John R. Koza. 1992. Genetic Programming: On the Programming of Computers by
Natural Selection. MIT press.

[29] John R. Koza et al. 2003. What’s AI Done for Me Lately? Genetic Programming’s
Human-Competitive Results. IEEE Intelligent Systems 18, 3 (May/June 2003),
25–31. http://dx.doi.org/10.1109/MIS.2003.1200724

[30] Oliver Krauss andW. B. Langdon. 2020. Automatically Evolving Lookup Tables for
Function Approximation. In EuroGP 2020: Proceedings of the 23rd European Con-
ference on Genetic Programming (LNCS), Ting Hu et al. (Eds.), Vol. 12101. Springer
Verlag, Seville, Spain, 84–100. http://dx.doi.org/10.1007/978-3-030-44094-7_6

[31] W. B. Langdon. 2015. Genetic Improvement of Software for Multiple Objectives.
In SSBSE (LNCS), Yvan Labiche and Marcio Barros (Eds.), Vol. 9275. Springer,
Bergamo, Italy, 12–28. http://dx.doi.org/10.1007/978-3-319-22183-0_2 Invited
keynote.

[32] W. B. Langdon. 2018. Genetic Improvement GISMOE Blue Software Tool Demo.
Technical Report RN/18/06. University College, London, London, UK. http:
//www.cs.ucl.ac.uk/fileadmin/user_upload/blue.pdf

[33] W. B. Langdon. 2019. Genetic Improvement of Data gives double precision invsqrt.
In 7th edition of GI @ GECCO 2019, Brad Alexander et al. (Eds.). ACM, Prague,
Czech Republic, 1709–1714. http://dx.doi.org/10.1145/3319619.3326800

[34] William B. Langdon et al. 2017. Inferring Automatic Test Oracles. In Search-
Based Software Testing, Juan P. Galeotti and Justyna Petke (Eds.). Buenos Aires,
Argentina, 5–6. http://dx.doi.org/10.1109/SBST.2017.1

[35] William B. Langdon et al. 2018. Evolving better RNAfold structure prediction. In
EuroGP 2018: Proceedings of the 21st European Conference on Genetic Programming
(LNCS), Mauro Castelli et al. (Eds.), Vol. 10781. Springer Verlag, Parma, Italy,
220–236. http://dx.doi.org/10.1007/978-3-319-77553-1_14

[36] W. B. Langdon et al. 2020. Bit-Rot: Computer Software Degrades over Time. IEEE
Software Blog. (11 March 2020). http://blog.ieeesoftware.org/2020/03

[37] W. B. Langdon and M. Harman. 2010. Evolving a CUDA Kernel from an nVidia
Template. In 2010 IEEE World Congress on Computational Intelligence, Pilar So-
brevilla (Ed.). IEEE, Barcelona, 2376–2383. http://dx.doi.org/10.1109/CEC.2010.
5585922

[38] William B. Langdon and Mark Harman. 2015. Grow and Graft a better CUDA
pknotsRG for RNA pseudoknot free energy calculation. In Genetic Improvement
2015 Workshop, William B. Langdon et al. (Eds.). ACM, Madrid, 805–810. http:
//dx.doi.org/10.1145/2739482.2768418

[39] William B. Langdon and Mark Harman. 2015. Optimising Existing Software with
Genetic Programming. IEEE Transactions on Evolutionary Computation 19, 1 (Feb.
2015), 118–135. http://dx.doi.org/10.1109/TEVC.2013.2281544

[40] W. B. Langdon and Brian Yee Hong Lam. 2017. Genetically Improved BarraCUDA.
BioData Mining 20, 28 (2 Aug. 2017). http://dx.doi.org/10.1186/s13040-017-0149-1

[41] William B. Langdon and Ronny Lorenz. 2017. Improving SSE Parallel Code with
Grow and Graft Genetic Programming. In GI-2017, Justyna Petke et al. (Eds.).
ACM, Berlin, 1537–1538. http://dx.doi.org/10.1145/3067695.3082524

[42] William B. Langdon and Justyna Petke. 2015. Software is Not Fragile. In Com-
plex Systems Digital Campus E-conference, CS-DC’15 (Proceedings in Complex-
ity), Pierre Parrend et al. (Eds.). Springer, 203–211. http://dx.doi.org/10.1007/
978-3-319-45901-1_24 Invited talk.

[43] William B. Langdon and Justyna Petke. 2018. Evolving Better Software Pa-
rameters. In SSBSE 2018 Hot off the Press Track (LNCS), Thelma Elita Colanzi
and Phil McMinn (Eds.), Vol. 11036. Springer, Montpellier, France, 363–369.
http://dx.doi.org/10.1007/978-3-319-99241-9_22

[44] W. B. Langdon and Justyna Petke. 2019. Genetic Improvement of Data gives
Binary Logarithm from sqrt. In GECCO ’19 Companion, Richard Allmendinger
et al. (Eds.). ACM, Prague, Czech Republic, 413–414. http://dx.doi.org/10.1145/
3319619.3321954

[45] William LaPlante and Robert Wisnieff. 2018. Final Report of the Defense Sci-
ence Board Task Force on the Design and Acquisition of Software for Defense Sys-
tems. Technical Report. DoD, USA. https://dsb.cto.mil/reports/2010s/DSB_SWA_
Report_FINALdelivered2-21-2018.pdf

[46] Claire Le Goues et al. 2010. The case for software evolution. In Proceedings
of the FSE/SDP workshop on Future of software engineering research, FoSER’10,
Gruia-Catalin Roman and Kevin J. Sullivan (Eds.). ACM, Santa Fe, New Mexico,
USA, 205–210. http://dx.doi.org/10.1145/1882362.1882406

[47] Claire Le Goues et al. 2019. Automated Program Repair. Commun. ACM 62, 12
(Dec. 2019), 56–65. http://dx.doi.org/10.1145/3318162

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://aist.fh-hagenberg.at/index.php/en/team-2/oliver-krauss-2
http://dx.doi.org/10.1145/3338906.3341184
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://dx.doi.org/10.1145/2771783.2771796
http://dx.doi.org/10.1145/2771783.2771796
http://dx.doi.org/109/TSE.2014.2372785
http://dx.doi.org/109/TSE.2014.2372785
http://dx.doi.org/10.1145/3321707.3321841
http://dx.doi.org/10.1145/2739482.2768420
http://dx.doi.org/10.1145/2739482.2768420
http://dx.doi.org/10.1007/978-3-319-47106-8_18
http://dx.doi.org/10.1007/978-3-319-22183-0_20
http://dx.doi.org/10.1007/978-3-319-22183-0_20
http://dx.doi.org/10.1016/j.parco.2003.03.001
http://dx.doi.org/10.1016/j.parco.2003.03.001
http://dx.doi.org/10.1109/MS.1987.231418
http://dx.doi.org/10.1109/MS.1987.231418
http://dx.doi.org/10.1007/978-3-642-23716-4_5
http://dx.doi.org/10.5455/AIM.2012.21.63-66
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF
http://dx.doi.org/10.1007/s12293-018-0263-8
http://dx.doi.org/10.1145/2025113.2025179
http://dx.doi.org/10.1145/2025113.2025179
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1109/JSSC.2009.2014205
http://dx.doi.org/10.1145/3067695.3082517
http://dx.doi.org/10.1145/2351676.2351678
http://dx.doi.org/10.1007/978-3-319-09940-8_20
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://dx.doi.org/10.1145/2931037.2931062
http://dx.doi.org/10.1145/2931037.2931062
http://dx.doi.org/10.1007/978-3-319-22183-0_22
http://dx.doi.org/10.1007/978-3-319-22183-0_22
http://dx.doi.org/10.1109/MIS.2003.1200724
http://dx.doi.org/10.1007/978-3-030-44094-7_6
http://dx.doi.org/10.1007/978-3-319-22183-0_2
http://www.cs.ucl.ac.uk/fileadmin/user_upload/blue.pdf
http://www.cs.ucl.ac.uk/fileadmin/user_upload/blue.pdf
http://dx.doi.org/10.1145/3319619.3326800
http://dx.doi.org/10.1109/SBST.2017.1
http://dx.doi.org/10.1007/978-3-319-77553-1_14
http://blog.ieeesoftware.org/2020/03
http://dx.doi.org/10.1109/CEC.2010.5585922
http://dx.doi.org/10.1109/CEC.2010.5585922
http://dx.doi.org/10.1145/2739482.2768418
http://dx.doi.org/10.1145/2739482.2768418
http://dx.doi.org/10.1109/TEVC.2013.2281544
http://dx.doi.org/10.1186/s13040-017-0149-1
http://dx.doi.org/10.1145/3067695.3082524
http://dx.doi.org/10.1007/978-3-319-45901-1_24
http://dx.doi.org/10.1007/978-3-319-45901-1_24
http://dx.doi.org/10.1007/978-3-319-99241-9_22
http://dx.doi.org/10.1145/3319619.3321954
http://dx.doi.org/10.1145/3319619.3321954
https://dsb.cto.mil/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-2018.pdf
https://dsb.cto.mil/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-2018.pdf
http://dx.doi.org/10.1145/1882362.1882406
http://dx.doi.org/10.1145/3318162

Evolving sqrt into 1/x via Software Data Maintenance GECCO ’20 Companion, July 8–12, 2020, Internet

[48] Ronny Lorenz, Stephan H. Bernhart, Christian Höner zu Siederdissen, Hakim
Tafer, Christoph Flamm, Peter F. Stadler, and Ivo L. Hofacker. 2011. ViennaRNA
Package 2.0. Algorithms for Molecular Biology 6, 1 (2011). http://dx.doi.org/10.
1186/1748-7188-6-26

[49] Alexandru Marginean et al. 2015. Automated Transplantation of Call Graph and
Layout Features into Kate. In SSBSE (LNCS), Yvan Labiche and Marcio Barros
(Eds.), Vol. 9275. Springer, Bergamo, Italy, 262–268. http://dx.doi.org/10.1007/
978-3-319-22183-0_21

[50] Alexandru Marginean et al. 2019. SapFix: Automated End-to-End Repair at
Scale. In 41st International Conference on Software Engineering, Joanne M. Atlee
and Tevfik Bultan (Eds.). ACM, Montreal, 269–278. http://dx.doi.org/10.1109/
ICSE-SEIP.2019.00039

[51] P. W. Markstein. 1990. Computation of elementary functions on the IBM RISC
System/6000 processor. IBM Journal of Research and Development 34, 1 (Jan 1990),
111–119. http://dx.doi.org/10.1147/rd.341.0111

[52] Roger J. Martin and Wilma M. Osborne. 1983. Guidance on software maintenance.
NBS Special Publication 500-106. National Bureau of Standards, Department of
Commerce, Washington DC, USA. http://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nbsspecialpublication500-106.pdf

[53] Michael Mohan and Des Greer. 2018. A survey of search-based refactoring for
software maintenance. Journal of Software Engineering Research and Development
6, 3 (7 February 2018). http://dx.doi.org/10.1186/s40411-018-0046-4

[54] Gordon E. Moore. 1965. Cramming more components onto integrated circuits.
Electronics 38, 8 (April 19 1965), 114–117.

[55] Vojtech Mrazek et al. 2015. Evolutionary Approximation of Software for Embed-
ded Systems: Median Function. In Genetic Improvement 2015 Workshop, William B.
Langdon et al. (Eds.). ACM, Madrid, 795–801. http://dx.doi.org/10.1145/2739482.
2768416

[56] Paulo Augusto Nardi and Eduardo F. Damasceno. 2015. A Survey on Test Oracles.
Journal on Advances in Theoretical and Applied Informatics 1, 2 (2015), 50–59.
http://dx.doi.org/10.26729/jadi.v1i1.1034

[57] Justice Opara-Martins et al. 2016. Critical analysis of vendor lock-in and its
impact on cloud computing migration: a business perspective. Journal of Cloud
Computing 5, 4 (2016). http://dx.doi.org/10.1186/s13677-016-0054-z

[58] Michael Orlov and Moshe Sipper. 2011. Flight of the FINCH through the Java
Wilderness. IEEE Transactions on Evolutionary Computation 15, 2 (April 2011),
166–182. http://dx.doi.org/10.1109/TEVC.2010.2052622

[59] Justyna Petke. 2015. Constraints: The Future of Combinatorial Interaction Testing.
In 2015 IEEE/ACM 8th International Workshop on Search-Based Software Testing.
Florence, 17–18. http://dx.doi.org/doi:10.1109/SBST.2015.11

[60] Justyna Petke et al. 2014. Using Genetic Improvement and Code Transplants to
Specialise a C++ Program to a Problem Class. In 17th European Conference on
Genetic Programming (LNCS), Miguel Nicolau et al. (Eds.), Vol. 8599. Springer,
Granada, Spain, 137–149. http://dx.doi.org/10.1007/978-3-662-44303-3_12

[61] Justyna Petke et al. 2018. Genetic Improvement of Software: a Comprehensive
Survey. IEEE Transactions on Evolutionary Computation 22, 3 (June 2018), 415–432.
http://dx.doi.org/doi:10.1109/TEVC.2017.2693219

[62] Justyna Petke et al. 2018. Specialising Software for Different Downstream Appli-
cations Using Genetic Improvement and Code Transplantation. IEEE Transactions
on Software Engineering 44, 6 (June 2018), 574–594. http://dx.doi.org/10.1109/
TSE.2017.2702606

[63] Mauro Pezze and Cheng Zhang. 2015. Automated Test Oracles: A Survey.
In Advances in Computers. Vol. 95. Elsevier, 1–48. http://dx.doi.org/10.1016/
B978-0-12-800160-8.00001-2

[64] Adam Porter and Janos Sztipanovits (Eds.). 2001. Workshop on New Visions for
Software Design and Productivity: Research and Applications. Number 000-041.
USA Govt.’s NCO NITRD, Nashville. https://www.cs.umd.edu/~aporter/Docs/
sdp_wrkshp_final.pdf

[65] Eric Schulte et al. 2010. Automated Program Repair through the Evolution
of Assembly Code. In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering. ACM, Antwerp, 313–316. http://dx.doi.org/10.
1145/1858996.1859059

[66] Eric Schulte et al. 2014. Post-compiler Software Optimization for Reducing Energy.
In Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS’14. ACM, Salt Lake City,
Utah, USA, 639–652. http://dx.doi.org/10.1145/2541940.2541980

[67] Eric Schulte et al. 2015. Repairing COTS Router Firmware without Access to
Source Code or Test Suites: A Case Study in Evolutionary Software Repair. In
Genetic Improvement 2015 Workshop, William B. Langdon et al. (Eds.). ACM,
Madrid, 847–854. http://dx.doi.org/10.1145/2739482.2768427 Best Paper.

[68] Jeongju Sohn et al. 2016. Amortised Deep Parameter Optimisation of GPGPU
Work Group Size for OpenCV. In Proceedings of the 8th International Symposium
on Search Based Software Engineering, SSBSE 2016 (LNCS), Federica Sarro and
Kalyanmoy Deb (Eds.), Vol. 9962. Springer, Raleigh, North Carolina, USA, 211–217.
http://dx.doi.org/10.1007/978-3-319-47106-8_14

[69] Zdenek Vasicek and Vojtech Mrazek. 2017. Trading between quality and non-
functional properties of median filter in embedded systems. Genetic Programming
and Evolvable Machines 18, 1 (March 2017), 45–82. http://dx.doi.org/10.1007/
s10710-016-9275-7

[70] David R. White. 2017. GI in No Time. In GI-2017, Justyna Petke et al. (Eds.). ACM,
Berlin, 1549–1550. http://dx.doi.org/doi:10.1145/3067695.3082515

[71] David R. White et al. 2011. Evolutionary Improvement of Programs. IEEE
Transactions on Evolutionary Computation 15, 4 (Aug. 2011), 515–538. http://dx.
doi.org/10.1109/TEVC.2010.2083669

[72] David R. White et al. 2017. Deep Parameter Tuning of Concurrent Divide and
Conquer Algorithms in Akka. In 20th European Conference on the Applications of
Evolutionary Computation (Lecture Notes in Computer Science), Giovanni Squillero
and Kevin Sim (Eds.), Vol. 10200. Springer, Amsterdam, 35–48. http://dx.doi.org/
10.1007/978-3-319-55792-2_3

[73] Fan Wu et al. 2015. Deep Parameter Optimisation. In GECCO ’15, Sara Silva et al.
(Eds.). ACM, Madrid, 1375–1382. http://dx.doi.org/10.1145/2739480.2754648

[74] Tianyi Zhang and Miryung Kim. 2017. Automated Transplantation and Dif-
ferential Testing for Clones. In Proceedings of the 39th International Confer-
ence on Software Engineering. IEEE Press, Buenos Aires, Argentina, 665–676.
http://dx.doi.org/10.1109/ICSE.2017.67

http://dx.doi.org/10.1186/1748-7188-6-26
http://dx.doi.org/10.1186/1748-7188-6-26
http://dx.doi.org/10.1007/978-3-319-22183-0_21
http://dx.doi.org/10.1007/978-3-319-22183-0_21
http://dx.doi.org/10.1109/ICSE-SEIP.2019.00039
http://dx.doi.org/10.1109/ICSE-SEIP.2019.00039
http://dx.doi.org/10.1147/rd.341.0111
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-106.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-106.pdf
http://dx.doi.org/10.1186/s40411-018-0046-4
http://dx.doi.org/10.1145/2739482.2768416
http://dx.doi.org/10.1145/2739482.2768416
http://dx.doi.org/10.26729/jadi.v1i1.1034
http://dx.doi.org/10.1186/s13677-016-0054-z
http://dx.doi.org/10.1109/TEVC.2010.2052622
http://dx.doi.org/doi:10.1109/SBST.2015.11
http://dx.doi.org/10.1007/978-3-662-44303-3_12
http://dx.doi.org/doi:10.1109/TEVC.2017.2693219
http://dx.doi.org/10.1109/TSE.2017.2702606
http://dx.doi.org/10.1109/TSE.2017.2702606
http://dx.doi.org/10.1016/B978-0-12-800160-8.00001-2
http://dx.doi.org/10.1016/B978-0-12-800160-8.00001-2
https://www.cs.umd.edu/~aporter/Docs/sdp_wrkshp_final.pdf
https://www.cs.umd.edu/~aporter/Docs/sdp_wrkshp_final.pdf
http://dx.doi.org/10.1145/1858996.1859059
http://dx.doi.org/10.1145/1858996.1859059
http://dx.doi.org/10.1145/2541940.2541980
http://dx.doi.org/10.1145/2739482.2768427
http://dx.doi.org/10.1007/978-3-319-47106-8_14
http://dx.doi.org/10.1007/s10710-016-9275-7
http://dx.doi.org/10.1007/s10710-016-9275-7
http://dx.doi.org/doi:10.1145/3067695.3082515
http://dx.doi.org/10.1109/TEVC.2010.2083669
http://dx.doi.org/10.1109/TEVC.2010.2083669
http://dx.doi.org/10.1007/978-3-319-55792-2_3
http://dx.doi.org/10.1007/978-3-319-55792-2_3
http://dx.doi.org/10.1145/2739480.2754648
http://dx.doi.org/10.1109/ICSE.2017.67

	Abstract
	1 Conventional Division is Expensive
	2 Background: AI for Software Maintenance
	3 Newton-Raphson
	4 Covariance Matrix Adaption - Evolution Strategy (CMA-ES)
	5 Evolving 1/x from GNU PowerPC x
	5.1 Manual changes
	5.2 Automatic changes to data table using CMA-ES
	5.3 Testing the evolved drcp function

	6 Discussion
	6.1 Sufficient Testing?
	6.2 Originality, Utility and Scope for Disruption of Software Engineering
	6.3 Future work: GI Autoport Test Cases and Test Oracles

	7 Conclusions
	References

