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ABSTRACT
We study both genotypic and phenotypic convergence in GP float-
ing point continuous domain symbolic regression over thousands
of generations. Subtree fitness variation across the population is
measured and shown in many cases to fall. In an expanding region
about the root node, both genetic opcodes and function evaluation
values are identical or nearly identical. Bottom up (leaf to root)
analysis shows both syntactic and semantic (including entropy)
similarity expand from the outermost node. Despite large regions
of zero variation, fitness continues to evolve and near zero crossover
disruption suggests improved GP systems. W. B. Langdon. 2022.
Genetic Programming Convergence. GP & EM 23,1, 71–104.
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MOTIVATION
Our goal is to push the limits of GP and report what we find there.
At more than 2 billion nodes, we have evolved the largest ever GP
trees. At up to a million generations, we have evolved GP popu-
lations far longer than ever before. To do this we have built the
fastest ever GP system (equivalent to up to 1.1 trillion GP operation
per second) [13]. In the process we have found thousands of fit-
ness improvements [13], confirmed early theoretical predictions1,
mapped GP convergence in multiple dimensions (see next section)
and demonstrated new information theoretical results: Failed Dis-
ruption Propagation, which prevents deep mutations impacting
fitness and which has implications for the evolution of computer
based complex systems [10] and software engineering [16].
1After many thousands of generations, GP populations are typically composed of trees
of random shape, neither balanced and full nor deep and straggly but somewhat fractal,
self similar, between the two extremes [2, 14]. We also see again sub-quadratic bloat [2]
(e.g. [11, Fig. 6]) with trees growth following a power law near gens2.0 . Although in
Boolean problems there can be cases of extreme fitness convergence where we see
bloat falling off after thousands of generations [3].
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To support this we have made a series of traditional and auto-
matic software improvements [4–9, 12] such that the run shown in
[11, Fig. 3] which was cut short after 5 weeks due to a neigbourhood
wide external power failure, can now be repeated in 5 days. (Code
is available via my home pages GPinc.tar.gz.)

SUMMARY
Much Genetic Programming work is aimed at applications where
there is a need for a quick solution and so GP runs tend to be short,
e.g. no more than fifty generations. But the goal of GP should also
be to solve problems which cannot be solved by other methods.
Recently Rich Lenski [15] has confounded the Biological establish-
ment and overturned conventional wisdom by showing that natural
evolution can continue to produce fitter organisms even after tens
of thousands of generations (see Section 1.5 in [11]). Perhaps a way
to open up GP to more adventurous applications, will require that
the GP population evolves for far longer?

We have made a start with long term evolution experiments in
GP. These have shown, even in fixed environments, GP can continue
to find improvements. The GP&EM paper shows what is going on
in these highly evolved populations. E.g., the GP fitness landscape is
far smoother than is commonly assumed, with crossover becoming
less phenotypically disruptive as tree grow larger and Section 9.6
suggesting increasing the rigour of the fitness function will only
slowly increase crossover’s effect.

Section 3 investigates genetic convergence. Section 4 shows
that phenotypic convergence lags behind genetic convergence of
the trees. Section 5 shows although operations like multiplication
or division by zero can render large parts of trees ineffective, in
the continuous domain such obviously ineffective code can be a
small (≈0.5%) or a large (91%) part of highly evolved programs.
Thus explaining why automatic intron removal may not always
improve GP execution time. Section 6 shows in converged popu-
lations many subtrees have identical phenotypes. In Section 7 we
study information flow within evolved trees and we find on average
entropy rises monotonically from the inputs (the leafs) towards the
the output (the tree’s root node) and quickly reaches a maximum,
log2 |test suite size|. This means large parts of evolved programs
have identical entropy. In contrast, Section 8 shows typically the
phenotypic disruption of crossover has a limited effect, which tends
to be damped in the region above the crossover point towards
the root node. This opens the way to the implementation of new
efficient GP interpreters for large evolving programs.
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Figure 1: Genetic convergence of contents and shape of 500
GP trees in first run at generations 2, 100, 1000 and 10 000.
At generation 1000 (blue) the whole population is identical
around their root nodes to a depth of ≤57. Indeedmost trees
agree to more than 444 nested function calls deep. Note non-
uniform scales. Also see https://youtu.be/TssAIo-vatE for an
online video in which the population is plotted as a circular
lattice [1].

 root

Figure 2: The consensus subfitness near the root changes
little after generation 100 (see Figure 15). Yellow best, blue
worse fitness. Movie https://youtu.be/_qz1_1AK1gw) shows
the evolution of phenotypic convergence.
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Figure 3: Evolution of fraction of childrenwith fitness differ-
ent frommum.Avoiding re-evaluation gives huge savings in
evaluation of GP opcodes.
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