
Genetic Programming Convergence [Hot of the Press]
William B. Langdon W.Langdon@cs.ucl.ac.uk

Department of Computer Science, University College London, London, UK

ABSTRACT
We study both genotypic and phenotypic convergence in GP float-
ing point continuous domain symbolic regression over thousands
of generations. Subtree fitness variation across the population is
measured and shown in many cases to fall. In an expanding region
about the root node, both genetic opcodes and function evaluation
values are identical or nearly identical. Bottom up (leaf to root)
analysis shows both syntactic and semantic (including entropy)
similarity expand from the outermost node. Despite large regions
of zero variation, fitness continues to evolve and near zero crossover
disruption suggests improved GP systems. W. B. Langdon. 2022.
Genetic Programming Convergence. GP & EM 23,1, 71–104.

KEYWORDS
genetic programming, evolutionary computation, stochastic search,
diversity, bottomup incremental evaluation, PIE, propagation, Failed
Disruption Propagation, FDP, infection, and execution, SIMD paral-
lel processing, AVX vector instructions
ACM Reference Format:
William B. Langdon W.Langdon@cs.ucl.ac.uk . 2022. Genetic Programming
Convergence [Hot of the Press]. In Genetic and Evolutionary Computation
Conference Companion (GECCO ’22 Companion), July 9–13, 2022, Boston, MA,
USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3520304.
3534063

MOTIVATION
Our goal is to push the limits of GP and report what we find there.
At more than 2 billion nodes, we have evolved the largest ever GP
trees. At up to a million generations, we have evolved GP popu-
lations far longer than ever before. To do this we have built the
fastest ever GP system (equivalent to up to 1.1 trillion GP operation
per second) [13]. In the process we have found thousands of fit-
ness improvements [13], confirmed early theoretical predictions1,
mapped GP convergence in multiple dimensions (see next section)
and demonstrated new information theoretical results: Failed Dis-
ruption Propagation, which prevents deep mutations impacting
fitness and which has implications for the evolution of computer
based complex systems [10] and software engineering [16].
1After many thousands of generations, GP populations are typically composed of trees
of random shape, neither balanced and full nor deep and straggly but somewhat fractal,
self similar, between the two extremes [2, 14]. We also see again sub-quadratic bloat [2]
(e.g. [11, Fig. 6]) with trees growth following a power law near gens2.0 . Although in
Boolean problems there can be cases of extreme fitness convergence where we see
bloat falling off after thousands of generations [3].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9268-6/22/07.
https://doi.org/10.1145/3520304.3534063

To support this we have made a series of traditional and auto-
matic software improvements [4–9, 12] such that the run shown in
[11, Fig. 3] which was cut short after 5 weeks due to a neigbourhood
wide external power failure, can now be repeated in 5 days. (Code
is available via my home pages GPinc.tar.gz.)

SUMMARY
Much Genetic Programming work is aimed at applications where
there is a need for a quick solution and so GP runs tend to be short,
e.g. no more than fifty generations. But the goal of GP should also
be to solve problems which cannot be solved by other methods.
Recently Rich Lenski [15] has confounded the Biological establish-
ment and overturned conventional wisdom by showing that natural
evolution can continue to produce fitter organisms even after tens
of thousands of generations (see Section 1.5 in [11]). Perhaps a way
to open up GP to more adventurous applications, will require that
the GP population evolves for far longer?

We have made a start with long term evolution experiments in
GP. These have shown, even in fixed environments, GP can continue
to find improvements. The GP&EM paper shows what is going on
in these highly evolved populations. E.g., the GP fitness landscape is
far smoother than is commonly assumed, with crossover becoming
less phenotypically disruptive as tree grow larger and Section 9.6
suggesting increasing the rigour of the fitness function will only
slowly increase crossover’s effect.

Section 3 investigates genetic convergence. Section 4 shows
that phenotypic convergence lags behind genetic convergence of
the trees. Section 5 shows although operations like multiplication
or division by zero can render large parts of trees ineffective, in
the continuous domain such obviously ineffective code can be a
small (≈0.5%) or a large (91%) part of highly evolved programs.
Thus explaining why automatic intron removal may not always
improve GP execution time. Section 6 shows in converged popu-
lations many subtrees have identical phenotypes. In Section 7 we
study information flow within evolved trees and we find on average
entropy rises monotonically from the inputs (the leafs) towards the
the output (the tree’s root node) and quickly reaches a maximum,
log2 |test suite size|. This means large parts of evolved programs
have identical entropy. In contrast, Section 8 shows typically the
phenotypic disruption of crossover has a limited effect, which tends
to be damped in the region above the crossover point towards
the root node. This opens the way to the implementation of new
efficient GP interpreters for large evolving programs.

Acknowledgements. I would like to thank the anonymous reviewers,
Simon Tatham for PuTTY, and Dagstuhl Seminars 17191 on the
theory of randomized heuristics and 18052 on Genetic Improvement
of Software [17], for inspiring conversations.
Funded by EPSRC GGGP and InfoTestSS grants EP/M025853/1,
EP/P005888/1.

http://www.cs.ucl.ac.uk/staff/W.Langdon
http://dx.doi.org/10.1007/s10710-021-09405-9
http://www.cs.ucl.ac.uk/staff/W.Langdon
https://doi.org/10.1145/3520304.3534063
https://doi.org/10.1145/3520304.3534063
https://doi.org/10.1145/3520304.3534063
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPinc.tar.gz
http://www.chiark.greenend.org.uk/~sgtatham/putty/
https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=17191
https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18052
http://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/M025853/1
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA William B. Langdon W.Langdon@cs.ucl.ac.uk

1

5

10
12

15

20

250

480

485

490

495

500

 1 10 100 1000

N
u

m
b
e

r
o

f
tr

e
e

s

Depth

Gen 2
100

1000
10000

Figure 1: Genetic convergence of contents and shape of 500
GP trees in first run at generations 2, 100, 1000 and 10 000.
At generation 1000 (blue) the whole population is identical
around their root nodes to a depth of ≤57. Indeedmost trees
agree to more than 444 nested function calls deep. Note non-
uniform scales. Also see https://youtu.be/TssAIo-vatE for an
online video in which the population is plotted as a circular
lattice [1].

 root

Figure 2: The consensus subfitness near the root changes
little after generation 100 (see Figure 15). Yellow best, blue
worse fitness. Movie https://youtu.be/_qz1_1AK1gw) shows
the evolution of phenotypic convergence.

REFERENCES
[1] Jason M. Daida, Adam M. Hilss, David J. Ward, and Stephen L. Long. 2005.

Visualizing Tree Structures in Genetic Programming. Genetic Programming
and Evolvable Machines 6, 1 (March 2005), 79–110. http://dx.doi.org/10.1007/
s10710-005-7621-2

[2] W. B. Langdon. 2000. Quadratic Bloat in Genetic Programming. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-2000), Darrell
Whitley, David Goldberg, Erick Cantu-Paz, Lee Spector, Ian Parmee, and Hans-
Georg Beyer (Eds.). Morgan Kaufmann, Las Vegas, Nevada, USA, 451–458. http:
//gpbib.cs.ucl.ac.uk/gecco2000/GA069.pdf

[3] William B. Langdon. 2017. Long-Term Evolution of Genetic Programming Pop-
ulations. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion (GECCO ’17). ACM, Berlin, 235–236. http://dx.doi.org/10.1145/
3067695.3075965

[4] W. B. Langdon. 2019. Parallel GPQUICK. In GECCO ’19 Companion, Carola Doerr
(Ed.). ACM, Prague, Czech Republic, 63–64. http://dx.doi.org/10.1145/3319619.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
ra

c
ti
o
n

 f
it
n

e
s
s
 d

is
ru

p
ti
o
n

 (
m

e
a
n

 1
0
0

 g
e
n
s
)

Generations

Figure 3: Evolution of fraction of childrenwith fitness differ-
ent frommum.Avoiding re-evaluation gives huge savings in
evaluation of GP opcodes.

3326770
[5] William B. Langdon. 2020. Fast Generation of Big Random Binary Trees. Technical

Report RN/20/01. Computer Science, University College, London, Gower Street,
London, UK. https://arxiv.org/abs/2001.04505

[6] W. B. Langdon. 2020. Genetic Improvement of Genetic Programming. In GI @
CEC 2020 Special Session, Alexander (Sandy) Brownlee, Saemundur O. Haraldsson,
Justyna Petke, and John R. Woodward (Eds.). IEEE Computational Intelligence
Society, IEEE Press, internet, paper id24061. http://dx.doi.org/10.1109/CEC48606.
2020.9185771

[7] W. B. Langdon. 2020. Multi-threaded Memory Efficient Crossover in C++ for
Generational Genetic Programming. ArXiv. arXiv:2009.10460 [cs.NE] http:
//arxiv.org/abs/2009.10460

[8] William B. Langdon. 2021. Fitness First. In Genetic Programming Theory and Prac-
tice XVIII (Genetic and Evolutionary Computation), Wolfgang Banzhaf, Leonardo
Trujillo, Stephan Winkler, and Bill Worzel (Eds.). Springer, East Lansing, MI, USA,
143–164. http://dx.doi.org/10.1007/978-981-16-8113-4_8

[9] William B. Langdon. 2021. Incremental Evaluation in Genetic Programming. In
EuroGP 2021: Proceedings of the 24th European Conference on Genetic Programming
(LNCS, Vol. 12691), Ting Hu, Nuno Lourenco, and Eric Medvet (Eds.). Springer
Verlag, Virtual Event, 229–246. http://dx.doi.org/10.1007/978-3-030-72812-0_15

[10] W. B. Langdon. 2022. Evolving Open Complexity. SIGEVOlution newsletter of
the ACM Special Interest Group on Genetic and Evolutionary Computation 15, 1
(March 2022). http://arxiv.org/abs/2112.00812

[11] W. B. Langdon. 2022. Genetic Programming Convergence. Genetic Programming
and Evolvable Machines 23, 1 (March 2022), 71–104. http://dx.doi.org/10.1007/
s10710-021-09405-9

[12] W. B. Langdon and W. Banzhaf. 2019. Faster Genetic Programming GPquick via
multicore and Advanced Vector Extensions. Technical Report RN/19/01. University
College, London, London, UK. http://www.cs.ucl.ac.uk/fileadmin/user_upload/
avx_rn1901.pdf

[13] William B. Langdon and Wolfgang Banzhaf. 2022. Long-Term Evolution Experi-
ment with Genetic Programming. Artificial Life 28, 2 (2022). http://www.cs.ucl.
ac.uk/staff/W.Langdon/ftp/papers/Langdon_2022_ALJ.pdf Invited submission to
Artificial Life Journal special issue of the ALIFE’19 conference.

[14] W. B. Langdon and Riccardo Poli. 2002. Foundations of Genetic Programming.
Springer-Verlag. http://dx.doi.org/10.1007/978-3-662-04726-2

[15] Richard E. Lenski et al. 2015. Sustained fitness gains and variability in fitness
trajectories in the long-term evolution experiment with Escherichia coli. Pro-
ceedings of the Royal Society B 282, 1821 (22 December 2015). http://dx.doi.org/
10.1098/rspb.2015.2292

[16] Justyna Petke, David Clark, and William B. Langdon. 2021. Software Robustness:
A Survey, a Theory, and Some Prospects. In ESEC/FSE 2021, Ideas, Visions and
Reflections, Paris Avgeriou and Dongmei Zhang (Eds.). ACM, Athens, Greece,
1475–1478. http://dx.doi.org/10.1145/3468264.3473133

[17] Justyna Petke, Claire Le Goues, Stephanie Forrest, and William B. Langdon. 2018.
Genetic Improvement of Software: Report fromDagstuhl Seminar 18052. Dagstuhl
Reports 8, 1 (23 July 2018), 158–182. http://dx.doi.org/10.4230/DagRep.8.1.158

http://www.cs.ucl.ac.uk/staff/W.Langdon
https://youtu.be/TssAIo-vatE
https://youtu.be/_qz1_1AK1gw
http://dx.doi.org/10.1007/s10710-005-7621-2
http://dx.doi.org/10.1007/s10710-005-7621-2
http://gpbib.cs.ucl.ac.uk/gecco2000/GA069.pdf
http://gpbib.cs.ucl.ac.uk/gecco2000/GA069.pdf
http://dx.doi.org/10.1145/3067695.3075965
http://dx.doi.org/10.1145/3067695.3075965
http://dx.doi.org/10.1145/3319619.3326770
http://dx.doi.org/10.1145/3319619.3326770
https://arxiv.org/abs/2001.04505
http://dx.doi.org/10.1109/CEC48606.2020.9185771
http://dx.doi.org/10.1109/CEC48606.2020.9185771
http://arxiv.org/abs/2009.10460
http://arxiv.org/abs/2009.10460
http://arxiv.org/abs/2009.10460
http://dx.doi.org/10.1007/978-981-16-8113-4_8
http://dx.doi.org/10.1007/978-3-030-72812-0_15
http://arxiv.org/abs/2112.00812
http://dx.doi.org/10.1007/s10710-021-09405-9
http://dx.doi.org/10.1007/s10710-021-09405-9
http://www.cs.ucl.ac.uk/fileadmin/user_upload/avx_rn1901.pdf
http://www.cs.ucl.ac.uk/fileadmin/user_upload/avx_rn1901.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2022_ALJ.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2022_ALJ.pdf
http://dx.doi.org/10.1007/978-3-662-04726-2
http://dx.doi.org/10.1098/rspb.2015.2292
http://dx.doi.org/10.1098/rspb.2015.2292
http://dx.doi.org/10.1145/3468264.3473133
http://dx.doi.org/10.4230/DagRep.8.1.158

	Abstract
	References

