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Fig. 1. Search landscape for the size of gem5’s heap. GNU glibc has
7 parameters, two plotted. Setting mmap infeasibly small increases the heap
size (red-blue-black), but for gem5 values 256–512 give a reduction ≈11%
(bright yellow) relative to the default 131 072 (orange). Of the 7 dimensions,
one (mmap) is dominant and it has a huge sweet spot. Note log scales.

Abstract—Using the language independent genetic improve-
ment tool MAGPIE (Machine Automated General Performance
Improvement via Evolution of software) and logarithmic sam-
pling, we measure the parameter fitness landscape when opti-
mising the GNU glibc heap management of a million line C++
application, gem5. The malloc info landscape is far smoother
than is commonly assumed and savings of 11% with no loss
of runtime speed are readily obtained by both Magpie and
CMA-ES.

Index Terms—SBSE, computer program tuning, parameter
search landscape, memory reduction.

I. INTRODUCTION

It is sometimes assumed that the fitness landscapes [1]–[4],
[5, Chapter 2] associated with software engineering problems
are vast and very difficult. Indeed authors often like to boast
that they have solved a particularly horrendous case. Here we
take the opposite approach and show this need not be the
case and that sometimes the search based approach [6] to
a software engineering problem faces a landscape which is
smooth, effectively unimodal and contains many acceptable
solutions1 (shown in yellow in Figure 1).

1In our example of reducing memory usage by at least 10% for a program
containing more than a million lines of C++, the fitness landscape contains
≈400 201 439 265 161 216 ≈ 4 1017 solutions, i.e. not a trivial fraction of
the whole search space.

The next section gives the background to: recent investiga-
tions of fitness landscapes in software engineering particularly
for genetic improvement (Section II-A), gem5 (our million+
line C++ example, Section II-B), optimising gem5’s heap
memory consumption (Section II-C) and the size of the
heap parameter’s search space (Section II-D). The following
sections describe reducing gem5’s memory consumption by
11% using Magpie (Section III) and CMA-ES (Section IV),
before we conclude that the difficulty of software engineering
search spaces may sometimes be overplayed and sometimes
they can be easy (Section V).

II. BACKGROUND

Genetic Improvement [7]–[11], has been applied to many
aspects of software, including machine code [12]–[15],
byte code [16], [17], assembler [18], LLVM intermediate
code [19], [20], functional building blocks [21], quantum
gates [22], even test suites [23], network protocols [24],
story generation [25], dataflow programming languages [26],
chemical reaction networks [27], SQL [28], mining specifi-
cations from code [29], reducing JavaScript load time [30]
and security [31], [32]. It is often used for enhancing non-
functional aspects of programs [33] such as reducing en-
ergy consumption [34], [35], network bandwidth [36], mem-
ory [37], [38] and run time [8]. GI has also been demonstrated
with parallel programming [39]–[42] and even transplanting
functionality from one program to another [43]–[45]. GI has
also been proposed for exploring novel hardware designs
before manufacture [46] and search [6] has been suggested
to optimise software testing [47]. GI is increasingly being
used with advanced AI techniques such as large language
models [48], [49]. However GI tools such as GIN [50], [51]
and Magpie [52] are usually applied to the human readable
program source code itself. Although there have been limited
target specific GI approaches which simultaneously optimised
parameters and source code [41], [53], it appears that at present
Magpie is unique in being the only general purpose GI tool
which can tune both parameters and source code, e.g. [54].
Whereas CMA-ES [55] (Section IV) is the state of the art
evolutionary algorithm for tuning continuous parameters.
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A. Genetic Improvement Fitness Landscapes

As Petke et al. [56] point out (apart from their own work on
open source Java programs) there are almost no systematic
studies of the search landscape when modifying non-trivial
programs. For example, we considered the Triangle Program
benchmark [57]–[61], whilst Renzullo et al. investigate neu-
tral networks in the Unix look utility [62] and the popular
Defects4J automated repair benchmark [63].

Information theoretic approaches [64] have considered data
flows within software [65] and concluded, due to entropy loss
leading to failed disruption propagation [66], programs are
much more robust than is commonly assumed [67]. Entropy
loss means disruption of all sorts (e.g. bugs [68], mutations,
even cosmic ray induced transients) can fail to reach the
program’s outputs and so have no impact, particularly in
deeply nested code [69], [70]. Silent errors and mutation which
do not change the output, typically do not change fitness. This
leads to flat, plateau ridden, software fitness landscapes with
many corresponding neutral moves.

As mentioned in the previous section, mostly automatic soft-
ware improvement has considered the programs themselves,
however many aspects of software are configurable and contain
parameters which can be tuned [71] or can be deliberately
exposed for optimisation [37]. For example, object-orientated
code relies on dynamic memory structures under the control
of the heap manager. In Section II-C we will describe in the
context of our example program, gem5, the seven tunable
GNU C/C++ malloc heap parameters, and how they can
be automatically optimised to reduce memory consumption
without rewriting source code.

B. gem5 and prior work on gem5

gem5 [72], [73] is the state of the art discrete time simulation
tool for computer chips and hardware. It comprises a total of
1.34 million lines of code (mostly C++)2. It supports Intel X86,
ARM, RISC V, MIPS, Alpha, Spark and Power instruction
sets, as well as various memory chips and cache architectures.
It is open source and has been under active community led
development and maintenance by a diverse team for more
than 13 years. (Umeike et al. [75] and Dakhama et al. [76]
previously used gem5 as a benchmark.) Although it supports
the LLVM compiler, gem5 is mostly used with the GNU g++
compiler and so uses the GNU C/C++ glibc runtime library.

C. glibc Heap and gem5

To show a software engineering example where the search
landscape is much smoother than is commonly assumed (Fig-
ure 1) we will show tuning glibc’s heap management for gem5.

The GNU C and C++ compilers share a common runtime
library. In particular the C malloc family of dynamic memory
management functions are also used by the C++ new and
delete operators. Thus we can use the GNU C malloc info
function to report details of gem5’s heap, particularly its

2We use the release of gem5 produced by Bobby R. Bruce for the SSBSE
2023 challenge track [74].

size. In common with other general purpose heap managers,
glibc’s imposes both runtime and memory overheads. (In the
context of gem5, except for severely mistuned parameters i.e.
timeouts, such as those shown in Figure 5, we saw little
variation in runtime heap overhead.) Extra memory is used
within the heap both for internal pointers to manage the
heap and padding both: to control heap fragmentation and
to ensure individual memory allocations are suitably aligned
for the computer’s hardware (we run gem5 on Intel’s 64 bit
X86 architecture). malloc info and malloc usable size give
details about actual memory on the heap. The memory actually
allocated is typically larger than the application asked for
(e.g. via new). glibc’s malloc typically allocates small memory
requests from its own heap and much larger request by
directly asking the operating system for memory via mmap.
The following sections describe some aspects of Linux’ data
memory management and alternative measurement tools.

1) gem5 Linux statm reports memory 4K pages: Under
the Linux operating system the actual memory given to the
program is available in the pseudo file /proc/self/statm (see
man proc). statm reports the current number of pages allocated
to a Linux process. These include both total virtual pages
and number of pages actually in memory. Naturally active
memory use depends not only on gem5 but also upon other
processes in the computer and so is noisy. Nevertheless gem5
gave somewhat consistent results on our networked Centos 7
32GB desktop. Although statm gives totals in 7 classes, two
are not used and others, particularly the number of data pages
and pages occupied by the stack, are “broken” [77, Table 1-3]
and difficult to interpret.

2) Massif high overhead but gives peak heap use in bytes:
Valgrind’s performance tuning tool massif, can report both
dynamic and peak heap usage with high precision. That is, it
reports the actual number of bytes, rather than the number of
4KB pages used. However massif imposes, particularly if very
accurate results are wanted, a considerable overhead, slowing
down gem5 by about 15 fold.

3) Google’s TCmalloc heap manager: It is also possible to
build gem5 with Google’s TCmalloc heap manager3. However
TCmalloc is not compatible with glibc’s measurement tools
and statm (see Section II-C1) results are dominated by the
increased executable file size so confusing comparisons with
glibc. Nonetheless TCmalloc may be an interesting approach.

4) gem5 malloc info used with Magpie and CMA-ES: Both
statm (Section II-C1) and massif (Section II-C2) have the
advantage of being general and can be applied without code
changes whereas we had to modify gem5 to insert a call to
malloc info. We decided to use malloc info as it is accurate
to the individual byte level, it has only a little noise, it imposes
almost no additional runtime overhead, and it relates directly
to the parameters we are tuning.

3https://google.github.io/tcmalloc/
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TABLE I
GNU GLIBC 2.17 MALLOC TUNABLE PARAMETERS

name default notes
M MMAP MAX 65536 Limit on mmap use
M MMAP THRESHOLD 131072 When to use mmap
M TRIM THRESHOLD 131072 When to return memory to

the operating system
M PERTURB 0 debug aid
M TOP PAD 0 Only multi-threaded
M ARENA TEST 0 Only multi-threaded
M ARENA MAX 0 Only multi-threaded

D. gem5 glibc Parameter Search Space

There are 7 GNU malloc tuning parameters (see Table I).
These each take non-negative integer values. Giving a search
space of (231)7 = 2.1 1065, clearly beyond enumeration. How-
ever a quick inspection of the documentation4 reveals three
parameters only apply to multi-threaded programs, whereas
gem5 is single threaded and another is provided as a debug
aid. This leaves three parameters, giving a search space of
(231)3 = 9.9 1027, which is still not enumerable. Although
the documentation says the very act of changing one of the
3 remaining parameters, M MMAP THRESHOLD, from its
default value, causes malloc etc. to change their behaviour,
Figure 1 shows the impact of explicitly setting the two most
important tunable parameters.

III. MAGPIE

Magpie (Machine Automated General Performance Improve-
ment via Evolution of software) [52] is an open source
language independent genetic improvement tool written by
Aymeric Blot at UCL. It was first released in 20225. It is often
used to improve C and Java source code but also has the ability
to tune parameters associated with programs. The Magpie user
specifies the parameters to be optimised in a parameter file (see
example in Table II). The file specifies with each parameter:
its name, type (categorical or continuous) range and associated
probability distribution (uniform, exponential, uniform discrete
or geometric, but see also Section III-C) and its default value.
It is also possible to provide information on legal and illegal
combinations of parameters [78].

A. Magpie Parameter Search for gem5’s heap

To tune malloc glibc parameters to minimise gem5’s
total heap, Magpie was run in local search mode
(python3 -m bin.local_search --scenario
examples/scenario/mallopt30.txt) using g++
version 10.2.1 and Python 3.7.3 for 1000 steps using
Magpie’s defaults. Notice (Table II) the search space has been
further reduced (from (231)7 Section II-D) to (1 + 225)3 =
33 554 4333 = 37 778 935 240 656 982 900 736 = 3.78 1022,
by restricting the range of values Magpie can explore for all
three parameters to zero plus the positive integers up to 225.

4https://www.gnu.org/software/libc/manual/html node/
Malloc-Tunable-Parameters.html

5We use Magpie downloaded on 2 October 2023 https://github.com/bloa/
magpie.

TABLE II
MAGPIE PARAMETER FILE MALLOPT30.TXT (TABLE I)

TIMING="run"
M_MMAP_MAX_tune g[0,33554432][65536]
M_TRIM_THRESHOLD_tune g[0,33554432][131072]
M_MMAP_THRESHOLD_tune g[0,33554432][131072]
CLI_PREFIX = ""
CLI_GLUE = "="

The value 225 was chosen as being 256 times bigger than the
largest default value (column 2 in Table I) and so probably
much bigger than needed. In Table II the suffix _tune is
appended to the glibc parameter names only to avoid any
confusion between the mechanism being used to tune glibc
and the actual parameter itself. (The data in Figure 1 was
obtained by interpolating between 2D grid points with a
typical ratio of

√
2 spanning 0 to 33 554 432.)

B. glibc malloc info Fitness Function

The only change needed to gem5 was to insert a call to gather
heap usage statistic by calling malloc info just before gem5
finishes. (For convenience and debugging the code also reports
glibc heap parameters, statm (Section II-C1) and uses Linux
perf [79], [80], [70] to gather statistics on run time.) After
gem5 finishes an external script extracts the size of the con-
ventional heap and mmap memory from malloc info’s output
and adds them to give the actual number of bytes of memory
used by gem5’s heap (including overheads, Section II-C). This
sum becomes the fitness which Magpie and CMA-ES try to
minimise.

Notice we are only calling malloc info at the end of the
gem5 run. This works well with gem5 but may be less
helpful with other programs. Valgrind’s massif (Section II-C2)
confirms this gives peak heap use for gem5.

Genetic improvement is often used to speed up software,
when it is critical to measure how fast each mutant is com-
pared to the original code. However measuring run time is
notoriously noisy and typically multiple measurements are
used and an average taken. This is what we do here, even
though malloc info is typically more consistent than run time
(malloc info noise < 0.05%).

gem5 is first run without changing any of the glibc malloc
parameters (Table I). All its outputs are saved and the size of
its heap is recorded. Then gem5 is run again with the mutated
values of M MMAP MAX, M MMAP THRESHOLD and
M TRIM THRESHOLD. Again its outputs and heap size are
recorded.

Both gem5 runs have a timeout of 15 seconds and
identical command lines (gem5 $script --isa X86
--binary $binary). Where $script is a Python script
used to control the gem5 run, e.g. the type of CPU to
simulate, the type and size of the memory, characteristics of
the link between the two, etc. Like [81], we use hello-
custom-binary.py which was supplied with the SSBSE
2023 challenge track [74].

https://www.gnu.org/software/libc/manual/html_node/Malloc-Tunable-Parameters.html
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$binary is a file containing the machine code whose
execution gem5 is to simulate. For example, it might be a
performance critical code segment which a gem5 user wishes
to simulate in order to tune hardware before manufacture or to
diagnose performance issues in existing designs. We use a self
contained compiled C fragment taken from the performance
critical loop in RNAfold [82]–[84]6. Our binary is set up to
execute exactly, including the actual RNA data values, 209
times the innermost actions of RNAfold folding an RNA
molecule composed of twenty bases (209 = 1

2 (20+1)20−1).
(After Magpie had been run, its output was verified with gem5
simulating a verity of binaries created by compiling different
C programs.)

Each output from the two gem5 runs is compared. If any
output were to be different the whole fitness evaluation would
be aborted. This did not happen in any production run. Even
though there is little noise, for convenience, we follow recent
practise [54] and repeat this eleven times for pairs of gem5
runs. If all 22 gem5 runs are successful, the fitness of the
mutant returned to Magpie (or CMA-ES) is the median of
the 11 pairs of runs of the ratio of the heap size with the
mutated parameters and without. If the parameters cause gem5
to timeout a very poor fitness value (100× the default) is
returned. Other errors are fatal, and after debugging did not
occur. I.e., all gem5 runs gave the right answers, except when
badly mistuned malloc parameters cause it to slowed down so
much that it was timed out.

C. Magpie’s Exploration of the Search Space

Figure 2 shows the progress of ten independent Mag-
pie runs. All the Magpie runs made some progress (or-
ange dots), but one run (run 0 +) succeeded in reducing
M MMAP THRESHOLD from its default value 131 072 to
268 in fitness evaluation 388, which lies comfortably in the
high fitness yellow valley of Figure 1 (fitness 11.1%). The best
fitness in Magpie run 0 was found in fitness evaluation 416
(also M MMAP THRESHOLD = 268) and gives a reduction
in gem5’s heap of 11.5% (The best value found by our grid
Figure 1 occurs at 28.0 = 256 and is 11.9%. Earlier, ad hoc
Magpie runs, found savings of up to 12.5%.)

Figure 3 concentrates upon another Magpie run (run 1) and
includes all three malloc parameters. Figure 3 highlights the
way Magpie searches parallel to each of the three axis. That
is, as Magpie finds new preferred settings it randomly changes
each of the three parameters one at a time leading to lines of
sample points (blue dots in Figure 3). E.g., notice the vertical
lines of blue dots due to sampling with different values of
M MMAP MAX but leaving the other parameters unchanged.
Similarly mutations to M TRIM THRESHOLD give lines of
blue dots parallel to the y-axis. The black arrows in Figure 3
highlight each new best fitness so far. The arrows show that
often Magpie makes progress by changing one parameter at a
time but multiple changes are also used.

6RNAfold is the state of the art bioinformatics tool for minimising free
energy in RNA molecules. It is a large open source project written in C
https://www.tbi.univie.ac.at/RNA/RNAfold.1.html.
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The values were M MMAP THRESHOLD=25 and =30.) Non-linear scales.

 1000

 10000

 100000

 1e+06

 1000
 10000

 100000
 1e+06

 1e+07

 1000

 10000

 100000

 1e+06

 1e+07

MMAP_MAX

TRIM_THRESHOLDMMAP_THRESHOLD

MMAP_MAX

Fig. 3. Typical Magpie run. Arrows highlight best point found so far. (All
runs start at default 128K,128K,65336.) This run reduces mmap but gets stuck
near mmap=8356 and so improves by only 1%. Noise added to spread data.
Note log scales.

Figure 4 shows the distribution of M MMAP
THRESHOLD values sampled in ten Magpie runs (note
log scale). On average, the 268 new values sampled are
exponentially distributed with a mean of 340 000 (as expected
this is 1% of the range of M MMAP THRESHOLD values,
see Table II). However where Magpie found parameter settings
which reduce gem5’s heap, there are appreciable peaks due
to M MMAP THRESHOLD values being reused. These are
specific to each run. Notice despite finding lower better values,
due to the large mean, Magpie continues to preferentially
sample large values. Crucially only Magpie run 0 samples
values of M MMAP THRESHOLD from the 255–511 bin,
corresponding roughly to the region giving heap saving of
more than 10% shown as the yellow valley in Figure 1.

IV. CMA-ES

We also tried Hansen’s Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES)7algorithm [55]. We used the C
version of CMA-ES from Krauss’ [85]–[89] replication
package [90] compiled with GCC version 7.3.1. Although

7 https://cma-es.github.io/
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Hansen [91] recommends preconditioning, the data did not
need careful preparation and we simply re-used the Magpie
fitness function. That is, we used the natural data ranges for all
three parameters. However we did round the double values
in the CMA-ES population to integers in the same range as
Magpie (i.e. 0 · · · 225). Similarly CMA-ES was initialised with
the glibc default values and its initial standard deviations were
set to 25% of these start values [91]. Otherwise CMA-ES’s
defaults were used and like Magpie it was run for 1 000 fitness
evaluations. (Note although CMA-ES uses a 3 × 64 bit double
precision representation, by rounding to the same integer
ranges as we used with Magpie, the CMA-ES search space
is the same as the Magpie one, i.e. 3.78 1022.) Since they use
the same fitness function and number of evaluations, CMA-ES
and Magpie runtimes are similar. (Magpie is about 10% faster
because where it resamples a point in the search space, it
does not re-evaluate it but instead uses its cache of previously
measured fitness values.)

Of ten independent CMA-ES runs (see Figure 5), two runs
find improvements of only 0.5% (+ and × in Figure 5). For ex-
ample, early in run 2, CMA-ES overshoots the sweet spot and
tests negative parameter settings which sometimes cause gem5
to be timed out (vertical values > 400 plotted with + at left
edge in Figure 5). Thus in run 2 CMA-ES learns to avoid small
values and in the last 80% of run 2 CMA ES almost never
samples M MMAP THRESHOLD below 10 000. Similarly,
although CMA-ES run 3 (× in Figure 5) does not get as many
timeouts, early in the run it also repeatedly samples negative
values (which are mapped to M MMAP THRESHOLD = 0)
which have poor fitness (black region in Figure 1), and again
in run 3 CMA-ES learns to avoid small values and so in the
last 60% of run 3 CMA-ES almost never samples M MMAP
THRESHOLD below 10 000. Note the similarity between
Figure 1 and Langdon and Poli’s synthetic benchmark [92,
Fig. 23], which was deliberately evolved to be difficult for
CMA-ES. However the glibc sweet spot is large enough that,
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although in the other eight runs CMA-ES also overshoots and
also occasionally causes gem5 to timeout, it does not shun
small values (dots in Figure 5) and later in these runs it does
home in on the sweet spot. Therefore CMA-ES is able to find
glibc parameter settings which reduced gem5’s heap by on av-
erage 11.6% (best 11.7%), essentially by setting M MMAP
THRESHOLD to a value between 338 and 520 (best 430).

V. CONCLUSIONS

We have shown that both Magpie and CMA-ES can be applied
out of the box to a non-trivial software engineering problem
(reducing by at least 11% the heap of a program composed of
more than a million lines of C++ without changing its code
or slowing it down) in less than 14 hours (total 10 × 1000
fitness evaluations on an 8 core 3.6 GHz desktop) despite the
fact that the search space is 37 778 935 240 656 982 900 736
(3.78 1022).

We conclude, in software engineering, size is not necessarily
a guide to problem difficulty and sometimes SE problems are
easier than they might appear.
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