
Soft Computing (2011) 15:1657–1669 DOI: 10.1007/s00500-011-0695-2
Preprint

Graphics Processing Units and Genetic Programming: An overview

W. B. Langdon

CREST centre, Department of Computer Science, University College, London, Gower Street, London, WC1E 6BT, UK

Abstract A top end graphics card (GPU) plus a suit-
able SIMD interpreter, can deliver a several hundred fold
speed up, yet cost less than the computer holding it. We
give highlights of AI and computational intelligence ap-
plications in the new field of general purpose computing
on graphics hardware (GPGPU). In particular we sur-
vey genetic programming (GP) use with GPU. We give
several applications from Bioinformatics and show how
the fastest GP is based on an interpreter rather than
compilation. Finally using GP to generate GPU CUDA
kernel C++ code is sketched.

1 Introduction

Throughout my life computing has been dominated by
Moore’s Law [1]. The doubling of the number of com-
ponents available on integrated circuit chips every eigh-
teen months has been taken as an obvious fact of life
and similar exponential rises have occurred in process-
ing power and storage capacity. The compound effect of
Moore’s Law has lead to literally million fold increases
in hardware performance during careers in the software
industry. Naysayers have frequently pointed out the im-
possibility of exponential grow continuing indefinitely,
however today it looks like they are right in at least
one important aspect and we have reached the end of
Moore’s law as it has been applied to processor speed.
In commercial terms, the industry remains dominated
by descendants of Intel’s 8086 silicon chips yet for half
a decade we have seen no major increase in CPU clock
speed since the 3GHz Pentium. (See lower plot in Fig-
ure 1.) If the 1 1

2 year doubling had continued we would
have 20-25GHz Pentium’s on our desks and in our lap-
tops. This has not happened. It looks like it will never
happen.

In the last century hardware manufactures were able
to help the software industry out of the hole it contin-
ues to create for itself by continually increasing software

 0

 200

 400

 600

 800

 1000

 1200

 2003 2004 2005 2006 2007 2008 2009 2010

P
ea

k
si

ng
le

 p
re

ci
si

on
 G

F
lo

p/
se

cc
on

d

Tesla 8-series

Tesla 10-series

Tesla 20-series

Nehalem 3GHz
Westmere 3GHz

nVidia GPU
X86 CPU

Fig. 1 Comparison of increase in speed of graphics cards
(+ GPU) and CPU (× X86). (Data supplied by NVIDIA.)
Similar trends hold for double precision and integer perfor-
mance.

complexity and so processing load. They did this by re-
peatedly doubling both memory capacity and individ-
ual CPU power. Those days are gone. However, in its
original sense the integrated circuit manufactures have
obeyed Moore’s Law and the number of transistors per
chip has continued to increase. Indeed in a recent article,
Izydorczyk and Izydorczyk [2] argue heat dissipation will
remain a major limit on processing power nevertheless
they suggest Moore’s Law will continue to hold for at
least the next 22 years. However they appear to accept
today’s limit of about 3.5GHz on processor clocks.

The additional transistors packed evermore densely
into chips have been used to create still bigger memory,
particularly on chip cache memory, more exotic instruc-
tion sets and especially to build multiple CPU cores on
the same chip. Dual and quad cores are now common
place. Eight and even sixteen core Pentium computers
are now on the horizon. It looks like we are really seeing
the parallel future which has been forecast since even
before the Transputer [3].

Operating systems have been successfully adapted to
multi-core architecture but it continues to be only spe-

http://www.cs.ucl.ac.uk/staff/W.Langdon/

1658 W. B. Langdon

64 MB

32bits

64 MB

32bits
memory

64 MB

32bits

64 MB

32bits
memory

64 MB

32bits

64 MB

32bits
memory

64 MB

32bits

64 MB

32bits
memory

64 MB

32bits

64 MB

32bits
memory

64 MB

32bits

64 MB

32bits
memory

ROP ROP ROP ROP ROP ROP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TF

TF

TA

TF

TF

TA

TF

TF

TA

TF

TF

TA

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TF

TF

TA

TF

TF

TA

TF

TF

TA

TF

TF

TA

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TF

TF

TA

TF

TF

TA

TF

TF

TA

TF

TF

TA

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TF

TF

TA

TF

TF

TA

TF

TF

TA

TF

TF

TA

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TF

TF

TA

TF

TF

TA

TF

TF

TA

TF

TF

TA

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TF

TF

TA

TF

TF

TA

TF

TF

TA

TF

TF

TA

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TF

TF

TA

TF

TF

TA

TF

TF

TA

TF

TF

TA

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TF

TF

TA

TF

TF

TA

TF

TF

TA

TF

TF

TA

SP

SP

SP

SP

T
hr

ea
d

Pr
oc

es
so

r

L2 CACHEL2 CACHEL2 CACHEL2 CACHEL2 CACHEL2 CACHE

PC

Input Assembler

PCI Express

Thread Execution Manager

L1L1 L1L1 L1L1 L1L1 L1L1 L1L1 L1L1 L1L1

Fig. 2 NVIDIA 8800 Block diagram. The 128 1360 MHz Stream Processors are arranged in sixteen blocks of eight. Blocks
share 16 KB memory (not shown), an 8/1 KB L1 cache, four Texture Address units and eight Texture Filters. The 6×64 bit
bus (brown) links off chip RAM at 900 (1800) MHz. There are 6 Raster Operation Partitions (ROP). In more recent high end
NVIDIA GPUs the multiprocessor blocks operate at similar clock speeds but can contain 24 or even 32 stream processors and
there may be ten or even fourteen multiprocessors. Also newer designs tend to have higher speed off chip memory connected
by higher bandwidth buses to the GPU chip with improved data caches.

cialised software that really takes advantage of parallel
hardware. A good parallelism strategy is simply to run
different applications on different cores. This can be ef-
fective where many user’s share a computer but it is
common place for each multi-core machine to have a
single user, which limits the number of different active
applications required at a time. The most useful aspect
of multi-core computers remains to have a spare core
free to allow the user to intervene, without crashing the
whole system, when a rogue application locks up its core.

The pedestrian pace with which the CPU manufac-
tures have exploited the riches Moore’s Law continues
to shower on the world, is in stark contrast with the
attitude of the manufactures of computer games. They
have been much more aggressive. Whilst four core CPUs
are now common, PlayStation Cell processor’s contain
eight cores and state-of-the art graphics cards contain
hundreds of processors. (See upper plot in Figure 1 and
Figure 2.)

While the balance between off-chip and on-chip mem-
ory may change the basic GPU architecture seems to
be well able to take advantage of more transistors. In
the near term we would expect to see Moore’s law dou-

bling of transistors leading to continued rapid increase in
number of processing cores per GPU. Thousands of cores
rather than today’s hundreds appears feasible. Also some
chip area might be used to continue the trend towards
more functionality per core and larger on chip memory
and extended data and instruction caches. However Sec-
tion 4.4 will describe some alternatives to GPUs and it
may be business rather than technological reasons that
eventually limit GPUs.

To be commercially successful games consoles and
GPUs have to be affordable. More than 100 million GPUs
have been sold [4], compared to earlier specialised par-
allel machines, such as MasPar’s MP-2, where about
250 were built. Software engineers have been alive to
the possibilities of exploiting GPUs with teraflop perfor-
mance for purposes other than entertainment. In recent
years the field of general purpose computing on GPU
(GPGPU) has become established [5]. Surprisingly soft-
ware researchers were a little slower to recognise the
potential of GPUs. Nevertheless the number of uses of
GPGPU in computer science continues to rise and as
we shall see GPGPU is increasingly being demonstrated
in artificial intelligence (AI). For example this summer

http://www.cs.ucl.ac.uk/staff/W.Langdon/

Graphics Processing Units and Genetic Programming: An overview 1659

(2010) we saw GPGPU competitions at the GECCO
conference and the third CIGPU (held as a hybrid spe-
cial session of the WCCI conference). Together these two
conferences published approximately 25 AI papers on
GPGPU.

The use of GPUs with genetic programming is rela-
tively new and perhaps as a consequence its development
so far has been a little uneven. However, we are now
at a good point. As we shall see, the basic frame work
is established and shortly we will see rapid infilling of
as yet sparse research areas. Early applications combin-
ing GPUs and GP were concentrated in Bioinformatics.
Again, we expect there will soon be progress in other
application areas.

The next section will briefly describe current research
in AI techniques which have exploited GPUs and then
Section 3 will concentrate upon one such technique, ge-
netic programming (GP). Before considering the way
ahead (Section 4), Section 3.5 will summarise applica-
tions using GPU and GP.

2 Computational Intelligence on GPU

It appears that some of the interactive game manufac-
tures have considered using the GPU to reduce the load
on the CPU caused by the artificial intelligence required
to drive sophisticated autonomous agents which the com-
puter provides to play against the user. However it is not
clear as yet how widespread or successful this is. Gamers
would not want to see clever AI opponents causing the
GPU to slow down or otherwise degrade on screen per-
formance. Nevertheless there are quite a few open aca-
demic publications where non-traditional AI techniques
have been ported to GPUs. Often considerable speed ups
are reported.

2.1 Neural Networks

There are many flavours of artificial neural network,
however typically they have many co-operating elements
and so are potential candidates for exploiting parallel
hardware. Typical applications do not require enormous
local interconnectivity and so neural network implemen-
tations may be able to exploit the relatively small amount
of very fast memory associated directly with each GPU
stream processing element. (Figure 2.)

Oh and Jung [6] and Luo et al. [7] both treat neural
networks as matrix operations and report considerable
speed ups by using a GPU when the neural network is
used on compute intensive image processing tasks. For
example, Ribeiro et al. [8] demonstrated speed ups in the
region of 170 fold when using Multiple Back-Propagation
to predict bankruptcy. As well as multi-layer perceptrons
(MLPs), Luo et al. [7] and Prabhu [9] have demonstrated
Kohonen’s self organising maps (SOMs) on NVIDIA GPUs.

More biologically realistic simulations of neural net-
works tend to be more computationally demanding, con-
sequently there has been interest in exploiting GPUs to
speed up spiking neural networks [10,11,12,13,14,15,16,
17,18]. Whilst Taha et al. [19] used a cluster of Sony
PlayStation 3s (each containing an STI CELL proces-
sor) rather than GPUs.

2.2 Fuzzy Systems

GPUs have been used to improve both rule construction
and inference [20] and speed up fuzzy clustering [21,22].
For example Harris and Haines [21] used NVIDIA’s Cg
language to implement a fuzzy system. With an early
GPU (an NVIDIA GeForce 5900 Ultra which had two
fragment processors) they report a consistent doubling
of speed when finding the centres of clusters in 2D im-
ages. Harvey et al. [20] implemented a fuzzy system in
Cg to be used for video based health monitoring of the
elderly. They report a speed up in excess of 150 times
from a single 8800 GTX. Similarly Anderson et al. [22]
used Cg but tested three NVIDIA GPUs (7800, Quadro
FX 2500M, as well as a 8800 GTX). They report rel-
ative performance improving both with the number of
processing elements in the GPU but also with the size
and complexity (number of fuzzy clusters) of the data.

2.3 Cellular Automata

Cellular automata (such as Conway’s Game of Life) are
natural candidates for parallel hardware. Early GPU
work includes John Tran’s poster at SIGGRAPH 2004
[23]. Whilst Gobron et al. [24] use openGL to imple-
ment a nice GPU/cellular automata combination which
speeds up an image processing system inspired by the
human eye.

2.4 Particle Swarm Optimization (PSO)

Swarm intelligence is a population based computational
intelligence technique which naturally benefits from par-
allel hardware. Mussi et al. have demonstrated using
GPUs to enable PSOs to automatically detect and cat-
egorise traffic road signs in real time [25].

2.5 Ant Colony Optimisation (ACO)

Surprisingly only modest speed up were reported ini-
tially [26]. GPU work using artificial ant pheromone trails
appears to have concentrated upon NP-hard problems
like the travelling salesman problem. However recently
Sinnott-Armstrong et al.’s prize winning work [27] claims
“substantial” speed ups in a Bioinformatics application.

1660 W. B. Langdon

2.6 Evolutionary Computation

Ka-Ling Fok et al. [28,29] were perhaps the first to im-
plement a complete genetic algorithm on a GPU. Their
system included not only evaluating fitness but included
storing the population on the GPU and the genetic op-
erations used to introduce changes and so search for im-
proved solutions. They implemented mutation specifi-
cally for the GPU but decided not to provide crossover,
fearing it would prove difficult and expensive on their
GPU. In contrast, on a more modern GPU and using
CUDA, Arora et al. [30] were able to implement both bi-
nary and real coded genetic algorithms including cross-
over. Whilst Kannan and Ganji [31] use a GPU to apply
a GA to three dimensional drug modelling and Tsutsui
and Fujimoto [32] used an NVIDIA 285 GTX to solve
large quadratic assignment problems.

Now-a-days many other types of evolutionary algo-
rithm have been implemented on GPUs, including: multi-
objective [33], Cellular Evolutionary Algorithms [34], Dif-
ferential Evolution [35], Bayesian Optimization Algo-
rithm (BOA) [36], Classifier Systems (LCS) [37] and
hybrid GA with local search [38]. However, as demon-
strated by Clayton et al. [39], GPU can provide sub-
stantial benefits to all kinds of evolutionary computa-
tion (they considered: an Estimation of Distribution Al-
gorithm (EDA), PSO and several types of GA) by sim-
ply speeding up fitness evaluation. Similarly Chwatal et
al. [40] showed an eight fold speedup in fitness evaluation
for when detecting exoplanets with Evolution Strategies.

3 Genetic Programming on GPU

Genetic programming (GP) [41] is a branch of evolution-
ary computation in which the population of potential so-
lutions are executable programs whose performance (fit-
ness) is given by running them and comparing the result
they calculate with the desired answer. Typically each
individual member of the evolving population is run sev-
eral times in a sequence of fitness test cases. After each
run, its answer is compared with the ideal answer for
the current test case. Often the overall fitness is given
by the sum of the errors made on all of the test cases. As
with other genetic algorithms (Section 2.6), new popula-
tions are formed by selecting the better programs from
the previous generation and mutating them. There is
even an analogue of sexual recombination (crossover),
whereby parts of two high fitness programs are spliced
together to form a new child.

Typically in GPU implementations the selection and
genetic operations (mutation and cross-over/recombina-
tion) are done by the host PC and the GPU is only
used to run the evolved program in order to determine
their fitness. This is not fundamental. Other operations
might also be run on the GPU. (Ka-Ling Fok et al. [29]
and others have shown this can be done for linear ge-
netic algorithms.) However since typically almost all the

computational effort is taken by fitness evaluation, there
is little incentive to speed up the remaining part of the
code.

The earliest uses of GPUs with genetic programming,
used the GPU as it was intended: to render 3D images.
Lindblad et al. [42] gave genetic programming the (in-
verse) task of generating virtual 3D models whose ren-
dered appearance matched as closely as possible real ob-
jects as seen by a robot. Meyer-Spradow and Loviscach
(e.g. [43]) were the first to run evolved programs on the
GPU. Now-a-days CUDA and OpenCL offer more so-
phisticated GPGPU facilities, however Meyer-Spradow
and Loviscach successfully evolved short linear assembly
language program pixel shaders and used them for in-
teractive real-time rendering. (At present CUDA is the
system of choice and there are no GP system imple-
mented in OpenCL. Doubtless this will soon change.)
Ebner et al. [44] use a similar approach to evolve new
pixel shaders for use within interactive evolution. How-
ever, rather than manipulating assembler directly, they
use genetic programming to create shaders written in
the high level graphics language Cg.

3.1 Compiled, Parallel Testing

Excluding the use of GPUs for graphics rendering (their
original designed purpose, see previous section) Hard-
ing and Banzhaf were the first to run evolved programs
on GPUs. In [45] Microsoft’s accelerator research tool
was used to compile Cartesian GP graph individuals into
programs and run them on a GPU. Note the parallelism
comes from the GPU’s ability to run the same program
simultaneously multiple times on different data. This ap-
proach works best when each GP individual must be run
many times in order to determine whether it will be used
to create the next generation or not. (I.e. its fitness.)
Chitty [46] used NVIDIA’s Cg rather than accelerator.
He also ran a single GP program at a time on the GPU.
Again the GPU’s advantage only comes when many fit-
ness cases can be run in parallel.

3.2 Interpreted, Parallel Populations

Genetic programming and other population based ap-
proaches have been called “embarrassingly parallel” from
the ease with which they can be run on traditional par-
allel computers and their ability to make good use of
the hardware. Since each member of the population can
be tested on its own, the whole population can be run
in parallel. (GP populations range from a few hundred
individuals up to a few millions.)

To get the best of modern GPU’s containing hun-
dreds of stream processors it is necessary to run thou-
sands or tens of thousands of parallel computation threads.
There are two main causes for this. 1) The depth of the
computation hardware pipeline in each stream processor.

http://www.cs.ucl.ac.uk/staff/W.Langdon/

Graphics Processing Units and Genetic Programming: An overview 1661

Depending on the type of the instructions, a stream pro-
cessor may be capable of overlapping the execution of up
to four instructions simultaneously. 2) Threads are often
paused because they are waiting for off-chip data to ar-
rive. If other threads are ready to execute (because their
data has arrived), the stream processors can start them
immediately, rather than becoming idle. While some-
what application and GPU dependent it seems at least
twenty computation threads per stream processor are
needed to get near to the GPU’s best performance.
(NVIDIA’s G80 architecture allows up to 512 threads
per multi-processor block of eight or more stream pro-
cessors. Version 2.0 allows up to 1024 threads per block.)

Apart from waiting for off-chip data, another major
cause for GPUs not delivering their peak performance
in practice, is that the stream processors in a multi-
processor block are inherently locked in step. Each of
them execute exactly the same instruction at the same
time, albeit on different data items. This is known as the
Single Instruction Multiple Data (SIMD) parallelism [47].
SIMD parallelism works well for many graphics applica-
tions, where exactly the same transformations are needed
for many different data items (e.g. pixels). The GPU ar-
chitecture causes a problem where a program contains
branches (if statements, switch, case, etc.) and different
threads take different branches. This is known as thread
divergence. The GPU hardware will pause the divergent
thread, and run the others. At some point, it will pause
them and restart the divergent threads. Only when all
threads reach the end of the branch and return to run-
ning the same code in lock-step will the GPU be able to
deliver its full power.

In many of the cases described in Section 2 the algo-
rithms do indeed perform the same action on each datum
and so threads can operate in lock-step and not diverge.
This is also sometimes true of the early GP approaches
in Sections 3 and 3.1. In these approaches typically a
single program is run in parallel threads which simul-
taneously act upon different parts of the training set.
However even threads running a single GP program can
diverge. For example: 1) because IF-like branches are in-
cluded in the function set. 2) Optimisations allow short
cuts. For example, when implementing AND and OR,
it is common to evaluate only one argument, if by do-
ing so, it is known that the other argument can have
no effect. E.g. AND(x=0,y) will be false, so there is no
need to evaluate y. Thus a thread where x=0 will take a
different path to one where x=1. (The same thing could
even happen in symbolic regression problems using the
traditional four functions: +, −, × and ÷, since ÷ is
usually “protected” [41] by treating divide by zero as a
special case. However the GPU floating point hardware
can recognise divide by zero and generate and propa-
gate special values NaN. So on GPUs, the GP function
set may not be explicitly “protected”.) Finally 3) even
if the GP program itself does not diverge, threads may
diverge during fitness evaluation if the fitness function

No

Push onto individuals stacks

IF Addition
Pop+Pop, Push result

IF Subtraction
Pop−Pop, Push result

IF Multiply
Pop * Pop, Push result

IF Division
Pop/Pop, Push result

All programs finished? Yes

Result is on top of each stack

IF Leaf

Fig. 3 The Reverse Polish Notation (RPN, postfix) SIMD
interpreter loops continuously through the whole genetic pro-
gramming instruction set for everyone in the population. GP
individuals select which operations they want as they go past
and apply them to their own data and their own stacks.

involves running something else which diverges. E.g. fit-
ness is calculated by running a simulator.

In some cases it is possible to avoid divergence by
having each thread perform both sides of the branch
and using a data indexing operation to select the appro-
priate branch’s answer. In principle avoiding divergence
could have benefits, like allowing global memory access
to be coalesced and keeping instruction pipelines full,
which could more than pay back for the extra computa-
tion. However the hardware scheduling and resumption
of stalled threads appears to be sufficiently smooth that
there may be little to be gained [48]. However Arora
et al. [30, p3683] advocates replacing a simple IF with a
more complicated algebraic expression (which effectively
does both branches of the IF).

Regardless of whether the program diverges, the GP
approaches in Sections 3 and 3.1 test one compiled GP
program at a time. This restricts the number of simul-
taneous threads they can use, typically to the number
of fitness test cases. With more powerful GPUs with
more stream processors per multi-processor block this
becomes more serious.

Our GPU SIMD interpreter approach [49] took the
opposite approach. It avoids the (surprisingly high) cost
of compiling GP individuals by using an interpreter and
secondly it processes the whole population in parallel.
(See Figure 3.) You will notice the main SIMD inter-
preter loop contains an IF statement for every instruc-
tion that can appear in the GP language. So even though
we can have a huge number of threads (at least one per
member of the population) the interpreter can suffer

1662 W. B. Langdon

from divergence. Juille and Pollack [50] originally pro-
posed a SIMD GP interpreter for the MasPar MP-2.
They recognised on the MP-2 [50, Sec. 17.2.3] the SIMD
architecture lead to an overhead “directly related to the
size of the instruction set interpreted by the virtual pro-
cessor”. However the GPU SIMD interpreter approach
primarily wins because it allows many threads which in
turn allows the GPU to better overlap reading its own
memory.

It turns out moving data around within the GPU can
be much more expensive than computing with it after it
has arrived. The size of the instruction set depends upon
the application but in GP between five and ten is com-
mon. However rather than thread divergence imposing a
5–10 fold overhead, this is masked by overlapping other
GPU operations (such as reading memory). Therefore an
overhead of about 2.5 is more usual. Where multiple test
cases are needed the divergence overhead can be made
negligible (see next section).

3.3 Compilation v. Interpreter

In computer science we are used to the trade offs be-
tween compiling and interpreting code. (While assem-
bler, Java byte code and even machine code have been
evolved with genetic programming, there has been lit-
tle work on evolving either GPU machine code or PTX
assembler.) Despite the introduction of Java and other
interpreted languages, we expect compiled code to be
faster than interpreting the code. Normally the compiler
is preferred because we expect the sum of the run times
of the program to exceed the compilation time. How-
ever GP programs tend to be lightweight and possibly
run few times, so it is common to use a purpose built
interpreter.

One way to reduce the compilation overhead is to
convert the whole population into a single program and
compile it [51]. The complete population program con-
tains (non-evolved) stub code to run each of its compo-
nent individuals and record their fitness. By running the
compiler only once, rather than once per member of the
population, considerable savings are made and typically
the compiled code runs much faster than interpreting it.

It turns out that the NVIDIA nvcc CUDA compiler is
particularly slow and so interpreting usually wins hands
down. However Harding and Banzhaf [52] describe a way
of reducing the compilation overhead by running the
compiler in parallel across a cluster of workstations. nvcc
is a wrapper which encompasses many stages. Signifi-
cant savings may be possible by disabling some options
and/or by having GP operate at lower levels, i.e. closer
to the executable instructions.

3.4 Recent Interpreters

In [53] we argued that the fitness evaluation of the GP
population can be treated as a cube of work to be done.
The cube has dimensions parallel to the length of the
programs, running across the members of the popula-
tions, and another through the test cases to be run.
The GPU SIMD interpreter approach allows the cube
to be sliced in many ways. The slices can be stacked
together and divided between the stream processors in
ways that suit each application (However, since a great
deal of check pointing would be required, at present, it
does not make sense to slice at right angles to the pro-
grams’ lengths.)

In [54] we integrated three levels of parallelism to
show a GPU SIMD interpreter is capable of delivering
a sustain average of 254 billion GP operations per sec-
ond. At present, this is about twenty times faster than
the best compiled approach and sixty times that of the
next interpreter. Doubtless it could be improved further.
(Equally well, we can expect improvements in other ap-
proaches.) 254 109 GPops/sec is a 10,000 fold speed up
compared to TinyGP [41] running on the 2.6 GHz PC
used to host the NVIDIA 295 GTX. (TinyGP is effi-
ciently written in C but does not use all the tricks. In
particular it does not use bit level parallelism [55]. It is
these multiple layers of parallelism that give our GPU
SIMD interpreter its enormous advantage. Nevertheless
it should be possible for you to use these techniques in
your own application.)

As expected, in [54] we found the best performance
comes from slicing the computational cube both along
the per individual and along the per test case dimen-
sions [56]. (Robilliard et al. [57,58,59] later called their
similar approach “blockGP”.) This gives millions of ac-
tive threads. The interpreter allows all the per test case
threads associated with a single program to be run on
the same multiprocessor. Thus, despite the IF branches
shown in Figure 3, all the threads in that multiproces-
sor run exactly the same instruction at the same time.
Hence in this case there is no divergence. (As mentioned
in Section 3.2, other instruction sets could introduce di-
vergence.) However [54] again showed that, as long as
there are sufficient threads, the GPU SIMD interpreter’s
performance is fairly stable and falls only by a modest
fraction (between 2 and 3) even when different GP pro-
grams from the same population are simultaneously in-
terpreted by the same block of stream processors.

A recent innovation is to extend the EASEA evo-
lutionary algorithm framework with a -cuda switch to
cause it to run on GPUs [60]. In [61] Maitre et al. demon-
strate EASEA’s population parallel SIMD GP interpreter.
They show impressive speed ups on an NVIDIA 295 GTX.
These include learning aircraft control using a popula-
tion of 40 960 and 51 000 training values obtained from
flight data.

http://www.cs.ucl.ac.uk/staff/W.Langdon/

Graphics Processing Units and Genetic Programming: An overview 1663

3.5 Bioinformatics Applications

For many practical and public policy reasons Bioinfor-
matics is a rapidly expanding area. Many of its funda-
mental algorithms are inherently parallel and so quite a
few Bioinformatics groups have been amongst the first
adaptors of GPUs for non-graphics work. (The next para-
graph describes just two non-GP examples.) Some of
these groups also have an interest in genetic program-
ming. It is for these practical reasons that there are sub-
stantially more publications on real GP applications us-
ing GPUs in Bioinformatics. These are described in the
rest of this section.

The Smith-Waterman algorithm lies behind many
Bioinformatics applications, such as sequence alignment.
It is highly parallel with only local interactions. How-
ever since it works across the trailing diagonal of square
matrices, this makes good implementations of it slightly
tricky, nonetheless Liu at al [62] reported a 16 fold speed
up. (More recent work includes that of Manavski and
Valle [63]. While Wirawan et al. [64] accelerate the Smith-
Waterman algorithm by running it on PlayStation games
consoles.)

In the aftermath of the human genome project, mod-
ern Biology has become awash with huge datasets (such
as the GeneChip data used in the next two sections).
GPUs have been demonstrated in data mining. For ex-
ample, Sinnott-Armstrong et al. [65] show a single com-
puter with three GTX 260 GPUs has similar perfor-
mance to a 150 node Beowulf cluster when using mul-
tifactor dimensionality reduction (MDR) on a genetic
(SNP) dataset.

3.5.1 Predicting GeneChip Probe Performance While
Sinnott-Armstrong et al. [65] analysed a 1600×1000 dis-
crete single point mutation dataset, GPUs have also been
used to analyse continuous whole human gene expres-
sion levels. In [66] we were interested in correcting faults
in GeneChip gene expression measurement data. Using
a population of 16 384, a single GPU containing 128
stream processors was able to find predictive patterns
in a 5 310 652 × 6685 RNA gene expression correlation
dataset. This GPU work gave an early indication of prob-
lems in the GeneChip data. These where taken up by a
grammar approach [67] which discovered a Cytosine and
Guanine rich motif (GGGG|CGCC|G(G|C){4}|CCC) that
indicates potentially poor data.

3.5.2 Genetic Factors in Breast Cancer Survival Be-
tween 1987 and 1989 gene expression was measured in
most of the breast cancers surgically removed in Upp-
sala (Sweden). (This data was gathered because a ge-
netic link to cancer was suspected.) This gave a dataset
of 1 013 888 × 251 continuous readings. In [56] we de-
scribe how populations of 5 242 880 small GP programs
were run on a single GPU. Multiple GP runs were used

decorin

−

C17orf81

/

C17orf81

*

+*

/1.54

C17orf81

hydrolase
S−adenosylhomocysteine

2.94

x

Fig. 4 GP evolved Breast cancer outcome
predictor based on just three gene expres-
sion measurements. Survival is predicted if
1.54 201893 x at.2pm

219260 s at.7pm
− 2.94 219260 s at.7pm− 219260 s at.7pm

200903 s at.8mm
< 0

(In the equation we have used the Affymetrix probe names
corresponding to the gene names used in the picture.)
Figure 5 shows this can be further simplified.

decorin

/

C17orf81

hydrolase
S−adenosylhomocysteine

1

2.94

+

/

C17orf81

*

Fig. 5 The GP classifier (Figure 4) is the weighted addition
of two 2 input classifiers (left and right).

to progressively filter the dataset. The resulting small
predictive model is shown in Figures 4 and 5.

Huang et al. [68] demonstrated a GPU based breast
cancer prognosis system on 15 biopsies. However their
image processing system is totally different and used op-
tical microscopes to probe the appearance of potential
tumours rather than using GeneChips to measure gene
expression.

4 Discussion

4.1 Future of Genetic Programming on GPU

Mostly we have talked about running GP programs on
GPU cards, however, as we saw in Section 3, GPUs can
also be used to speed up calculations required by the
fitness function. Particularly where a GP individual’s
fitness requires a simulation to be run, this can be very
computationally demanding. A GPU may be the solu-
tion. For example, Rieffel et al. [69] showed highly com-
plex physical interactions inherent in soft body interac-
tions could be effectively calculated using PhysX on a
GPU.

While it is possible to mount multiple GPUs in a
single workstation, the practical problems of mother-
board connections, physical space and power consump-
tion mean more than two GPUs per PC are rare. In con-
trast, systems with three or four Tesla1 GPUs mounted

1 Tesla are high end NVIDIA GPUs dedicated to compu-
tation rather than generating graphical images.

1664 W. B. Langdon

outside the host PC’s own box are in use. Lewis [70]
demonstrates a nice multi-threaded twin GPU system
where operations on the host neatly dovetail with fit-
ness evaluation on the GPUs.

Despite the fact that AMD’s ATI series of GPU ap-
pear to be competitive with NVIDIA’s almost all re-
cent GPGPU work has used NVIDIA’s CUDA. There
are good reasons for using CUDA. For example, in [49]
we used an early version of RapidMind (version 2), Ro-
billiard et al. [59] reimplemented it using an up to date
version of CUDA and reported an (up to) 92% speed
increase.

4.2 Genetic Programming with MIMD GPUs

In the near term, it is clear that GPUs will continue
to increase in performance and capability. For example,
NVIDIA’s Fermi architecture not only includes many
more processing elements but also aspects of multi-in-
struction multiple-data (MIMD) processing, which might
be useful for genetic programming. Typically current ap-
plications have a single GP kernel on the GPU. Multi-
program multiple-data MPMD processing allows much
more efficient mixing of multiple kernels. GPers might
take advantage of this by splitting fitness evaluation and
program interpreters into multiple GPU kernels. For ex-
ample, a large physics simulation used as part of the fit-
ness function might be composed of multiple kernels as
well as separate GP interpreter kernels. The newer archi-
tectures both reduces the overhead of context switching
between these and provides better overlap when they
can be run in parallel.

Modern version of CUDA are less restrictive in their
implementation of C and support recursion and function
pointers. The lack of recursion previously forced GP in-
terpreters to be based on Reverse Polish Notation (RPN)
(Section 3.2). GP interpreters, such as gpquick are able
to squeeze high performance from single core personal
computers by linearising each Lisp evaluation tree into
an equivalent list of C function pointers [71]. CUDA 3.2
should now allow this on GPUs as well.

Depending on the application (particularly number
of fitness tests) the newer MIMD architecture could lead
to much reduced divergence overhead in GP interpreters
(Section 3.2).

Another potential benefit is the use of a single mem-
ory addressing scheme for all the memory that the GPU
can access. This includes the host PC’s memory. At
present the PCI bus still imposes a large overhead on
transfers to and from the GPU but the newer archi-
tecture potentially allows both easier programming and
also access to potentially much more memory. In future,
tighter hardware integration between host memory and
GPU may greatly ease the host-GPU transfer bottle-
neck.

Currently, Reverse Polish interpreters often explic-
itly build their stacks in shared memory, even though

each stack is independent. A single addressing scheme
should allow the stack to be anywhere, including in ultra-
fast registers. Also newer architectures will include more
memory, allowing deeper stacks (and so less restrictions
on evolved GP individuals) and more and bigger kernels.

The newer architectures have more sophisticated
caches, which allow much more rapid data transfer be-
tween previously isolated parallel computations. Cur-
rently GP exploits the GPU well because it does not need
such synchronisation or data passing. However future
GPs may have more functionality on the GPU (other
than fitness evaluation) and so may also exploit this as-
pect of future GPU chips.

It may be possible to write a traditional prefix in-
terpreter for the new GPUs using a Lisp like depth first
recursive evaluation. However, it may be that such GPUs
will only lightly conceal their true SIMD roots and Re-
verse Polish interpreters will continue to give the best
GP performance. Which is best can only be evaluated
by implementation and benchmarking.

4.3 GPU Tools

Harding [45] gives a nice summary of the general pur-
pose GPU (GPGPU) tools available in 2007. However
many have fallen out of use. The software side of GPU
computing has proved less stable than the underlying
GPU architectures. In contrast, despite Moore’s law type
improvements in hardware performance, GPU architec-
tures have been relatively stable over the last half decade.
This raises the question of how can we pick long last-
ing GPGPU software tools and avoid getting locked into
dead ends.

Even now GPGPU tools are limited with only basic
emulation, debugging and performance monitoring avail-
able. Undoubtedly NVIDIA and others will provide im-
prove tools, such as nsight, however newer architectures
which include multi-instruction multiple-data (MIMD)
aspects build on previous SIMD architectures. The im-
proved tools and increasingly baroque instruction sets
have not removed the steep learning curve associated
with moving from sequential to parallel coding. How do
you debug 10 000 simultaneous threads? This is made
even harder by the GPU’s strange SIMD model of par-
allelism. Despite the overwhelming price advantage of
GPUs, it is this per person cost, that continues to limit
uptake of general purpose use of GPUs.

In [72] we show how evolutionary computing might
help by using GP to automatically create an NVIDIA
CUDA kernel for the compute intensive part of file com-
pression and use it within the Unix gzip utility. [72] is
a very early demonstration and much work still needs
to be done. There are also more traditional “auto-paral
lelisation” approaches, such as Baskaran et al. [73], which
can be applied in special cases.

http://www.cs.ucl.ac.uk/staff/W.Langdon/

Graphics Processing Units and Genetic Programming: An overview 1665

4.4 Alternatives to GPU

While the Cell processor [74] and games consoles [75] are
viable hardware platforms they also suffer the steep hu-
man programmer learning curve of GPUs. (Which we de-
scribed in the previous section.) Their architectures also
seem less scalable and we have not seen the enormous
Moore’s law performance gains that have been delivered
by GPUs in recent years.

There has been talk of integrating the GPU into the
CPU and certainly n-core Pentium or Pentium like CPUs
are with us and with “n” set to grow. An alternative view
of such integration might be that the chip holds many
(perhaps hundreds) of fully functioning processors. Most
of these would operate in parallel like processors in to-
day’s GPUs and also be fully capable CPUs in their own
right. However a small part of the chip would be re-
served for a few processors which would actually run
the operating system, including driving the file, network
and user interfaces. That is, a small part of the GPU
chip acts as its operating system (OS) server. Of course
there are substantial technical problems to overcome, not
least the power barrier [2] associated with getting power
to and removing heat from the literally billions of high
speed transistors which would have to be packed into a
small area. Nevertheless, if such approaches came with
software development tools that reduce the GPU learn-
ing curve, we would expect their model of parallelism to
succeed at the expense of GPGPU approaches.

Apart from some early work using the Edinburgh su-
per computers [76], super computing has had little im-
pact on GP. Much more successful have been loosely con-
nected distributed systems, such as Beowulf clusters and
Ethernet based local area networks connected by PVM,
MPI or even NFS. There have been some planet wide
distributed system [77,78] but this has yet to achieve
SETI@Home notoriety. Nonetheless work continues. Re-
cent successes include work by Cole [79], Desell [80] and
their co-workers. They showed evolutionary algorithms,
such as Differential Evolution, can be run across the In-
ternet using Boinc. The Boinc framework successfully
allows individuals to donate their computer’s spare time
for scientific research.

Cloud computing, for example Amazon’s EC2, is now
a commercial reality and is likely to be a natural home
for short term but compute hungry applications. Per-
haps off-site computers rented by the hour will displace
loosely coupled computer clusters, which are today’s
favoured mode of parallel genetic programming.

4.5 GPGPU and GP Information Sources

Although NVIDIA is a commercial company they make
CUDA and a huge amount of documentation freely avail-

able. They also host a (confusingly) large number of on
line developer forums2.

OpenCL is an alternative to CUDA and is also freely
available. Whilst supposedly able to support computing
across a wide range of parallel hardware, currently active
use appears to be concentrated upon NVIDIA GPUs.
However Apple (MAC OS), IBM, AMD ATI as well as
NVIDIA have publicly committed to it.

Other useful Internet based sources of information
include gpgpu.org3 and Simon Harding’s gpgpgpu.com4.

The Field Guide to Genetic Programming [41] is freely
available and covers almost all aspects of GP. The free
PDF contains hyperlinks to Internet resources. The Field
Guide has a section on GPUs.

The genetic programming bibliography5 contains most
papers on GP. In most cases it also has links to the PDF
or post-script of the paper. (Papers relevant to graphics
cards are marked “GPU”.)

5 Conclusions

We have sketched the threat offered to the software in-
dustry by the many times announced failure of Moore’s
law, and how the also many times announced age of par-
allel computing may (this time) actually be upon us.
We have concentrated upon a particularly cheap form of
computing in which consumer electronics is subverted for
use in science and engineering. This misuse of computer
games and particularly computer screen VDU drivers is
now being actively encouraged by manufactures such as
NVIDIA.

The real time interactive response demanded by users
of fantasy games has yielded tera flop performance in de-
vices smaller than a laptop and at lower cost. This mass
market has created a leap-frogging cycle in which the two
principle manufactures have created ever more powerful
or cheaper products than each other and in the process
they have driven out all other competitors. (Similarly
Intel dominates the market for low end GPUs.) With
hundreds of millions of devices being sold, the remain-
ing companies are able to spread their development costs
thinly and so keep the cycle moving forwards.

With what used to be super computer performance
available for less than the cost a conference registra-
tion, computer engineers and computer scientists have
founded a new field, GPGPU (General-Purpose use of
GPUs).

Section 2 gave a whistle stop tour of modern artifi-
cial intelligence using GPGPU. The next section concen-
trated upon one such technique, genetic programming.

2 http://forums.nvidia.com/
3 General-Purpose Computation on Graphics Hardware

http://gpgpu.org/
4 Genetic Programming on General Purpose Graphics Pro-

cessing Units http://gpgpgpu.com/
5 http://www.cs.bham.ac.uk/∼wbl/biblio

http://boinc.berkeley.edu/wiki/Publications_by_BOINC_projects
http://forums.nvidia.com/
http://gpgpu.org/
http://gpgpgpu.com/
http://www.cs.bham.ac.uk/~wbl/biblio

1666 W. B. Langdon

We included a couple of examples where the GPU’s sup-
posedly single instruction multiple data (SIMD) model
of parallelism has been successfully subverted to allow
sixteen thousand or (in the breast cancer example) five
million different programs, to be run simultaneously.

Section 4 looked at the downside and whether the fu-
ture is really based on fantasy hardware. We also consid-
ered potential alternatives to GPU. Finally we included
a few hints on getting started with programming GPUs
and on genetic programming.

Acknowledgements

Work started in Memorial University, Newfoundland (with
Wolfgang Banzhaf) and continued at Essex University
and King’s College, London prior to UCL. Some of it
using pre-release hardware donated by NVIDIA.

I would like to thank Gernot Ziegler of NVIDIA and
Lidia Yamamoto.

Funded by EPSRC grant EP/G060525/2

References

1. Moore, G. E. (1965) Cramming more components onto
integrated circuits. Electronics, 38, 114–117.

2. Izydorczyk, J. and Izydorczyk, M. (2010) Microprocessor
scaling: What limits will hold? IEEE Computer, 43, 20–
26.

3. Arabnia, H. R. and Oliver, M. A. (1987) A transputer
network for the arbitrary rotation of digitised images.
The Computer Journal, 30, 425–432.

4. Del Rizzo, B. (2008). Dice puts faith in nvidia PhysX
technology for Mirror’s Edge. NVIDIA Corporation press
release.

5. Owens, J. D., Houston, M., Luebke, D., Green, S., Stone,
J. E., and Phillips, J. C. (2008) GPU computing. Pro-
ceedings of the IEEE, 96, 879–899. Invited paper.

6. Oh, Kyoung-Su and Jung, Keechul (2004) GPU imple-
mentation of neural networks. Pattern Recognition, 37,
1311–1314.

7. Luo, Zhongwen, Liu, Hongzhi, and Wu, Xincai (2005)
Artificial neural network computation on graphic pro-
cess unit. International Joint Conference on Neural Net-
works, IJCNN ’05, Montreal, 31 July-4 Aug., pp. 622–
626.

8. Ribeiro, B., Lopes, N., and Silva, C. (2010) High-
performance bankruptcy prediction model using graph-
ics processing units. In Sobrevilla, P. (ed.), 2010
IEEE World Congress on Computational Intelligence,
Barcelona, 18-23 July, pp. 2210–2216.

9. Prabhu, R. D. (2008) SOMGPU: an unsupervised pat-
tern classifier on graphical processing unit. In Wang,
J. (ed.), 2008 IEEE World Congress on Computational
Intelligence, Hong Kong, 1-6 June, pp. 1011–1018.

10. Bernhard, F. and Keriven, R. (2006) Spiking neurons on
GPUs. In Alexandrov, V. N., van Albada, G. D., Sloot,
P. M. A., and Dongarra, J. (eds.), Proceedings of the
6th International Conference on Computational Science,
ICCS 2006, Part IV, Reading, UK, May 28-31, Lecture
Notes in Computer Science, 3994, pp. 236–243. Springer.

11. Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau,
A., and Veidenbaum, A. V. (2009) A configurable simu-
lation environment for the efficient simulation of large-
scale spiking neural networks on graphics processors.
Neural Networks, 22, 791–800.

12. Fidjeland, A. K., Roesch, E. B., Shanahan, M. P., and
Luk, Wayne (2009) NeMo: A platform for neural mod-
elling of spiking neurons using GPUs. 20th IEEE Inter-
national Conference on Application-specific Systems, Ar-
chitectures and Processors, ASAP 2009, Rennes, France,
7-9 July, pp. 137–144.

13. Han, Bing and Taha, Tarek M. (2010) Acceleration of
spiking neural network based pattern recognition on
NVIDIA graphics processors. Applied Optics, 49, B83–
B91.

14. Bhuiyan, M. A., Pallipuram, V. K., and Smith, M. C.
(2010) Acceleration of spiking neural networks in emerg-
ing multi-core and GPU architectures. In Karypis,
G. (ed.), Ninth IEEE International Workshop on High
Performance Computational Biology, Atlanta, USA, 19
April.

15. Yudanov, D., Shaaban, M., Melton, R., and Reznik, L.
(2010) GPU-based implementation of real-time system
for spiking neural networks. In Sobrevilla, P. (ed.), 2010
IEEE World Congress on Computational Intelligence,
Barcelona, 18-23 July, pp. 2143–2150.

16. Fidjeland, A. K. and Shanahan, M. P. (2010) Acceler-
ated simulation of spiking neural networks using GPUs.
In Sobrevilla, P. (ed.), 2010 IEEE World Congress on
Computational Intelligence, Barcelona, 18-23 July, pp.
536–543.

17. Han, Bing and Taha, T. M. (2010) Neuromorphic mod-
els on a GPGPU cluster. In Sobrevilla, P. (ed.), 2010
IEEE World Congress on Computational Intelligence,
Barcelona, 18-23 July, pp. 3050–3057.

18. Nowotny, T. (2010) Parallel implementation of a spik-
ing neuronal network model of unsupervised olfactory
learning on NVidia CUDA. In Sobrevilla, P. (ed.), 2010
IEEE World Congress on Computational Intelligence,
Barcelona, 18-23 July, pp. 3238–3245.

19. Taha, T. M., Yalamanchili, P., Bhuiyan, M., Jalasutram,
R., Chen, Chong, and Linderman, R. (2010) Neuromor-
phic algorithms on clusters of PlayStation 3s. In Sobre-
villa, P. (ed.), 2010 IEEE World Congress on Computa-
tional Intelligence, Barcelona, 18-23 July, pp. 3040–3049.

20. Harvey, N., Luke, R., Keller, J. M., and Anderson, D.
(2008) Speedup of fuzzy logic through stream process-
ing on graphics processing units. In Wang, J. (ed.),
2008 IEEE World Congress on Computational Intelli-
gence, Hong Kong, 1-6 June, pp. 3809–3815.

21. Harris, Chris and Haines, K. (2005) Iterative solutions
using programmable graphics processing units. The 14th
IEEE International Conference on Fuzzy Systems, FUZZ
’05, Reno, Nevada, USA, 22-25 May, pp. 12–18. IEEE.

22. Anderson, D. T., Luke III, R. H., and Keller, J. M.
(2008) Speedup of fuzzy clustering through stream pro-
cessing on graphics processing units. IEEE Transactions
on Fuzzy Systems, 16, 1101–1106.

23. Tran, J., Jordan, D., and Luebke, D. (2004) New chal-
lenges for cellular automata simulation on the GPU.
SIGGRAPH, Los Angeles. ACM. Poster.

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://gow.epsrc.ac.uk/ViewGrant.aspx?GrantRef=EP/G060525/2
ftp://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
ftp://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
http://comjnl.oxfordjournals.org/cgi/reprint/30/5/425.pdf
http://comjnl.oxfordjournals.org/cgi/reprint/30/5/425.pdf
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1016/j.patcog.2004.01.013
http://dx.doi.org/10.1016/j.patcog.2004.01.013
http://dx.doi.org/10.1007/11758549_36
http://dx.doi.org/10.1007/11758549_36
http://dx.doi.org/10.1016/j.neunet.2009.06.028
http://dx.doi.org/10.1016/j.neunet.2009.06.028
http://dx.doi.org/10.1016/j.neunet.2009.06.028
http://dx.doi.org/doi:10.1364/AO.49.000B83
http://dx.doi.org/doi:10.1364/AO.49.000B83
http://dx.doi.org/doi:10.1364/AO.49.000B83
http://www.hicomb.org/papers/HICOMB2010-02.pdf
http://www.hicomb.org/papers/HICOMB2010-02.pdf
http://dx.doi.org/10.1109/CEC.2008.4631314
http://dx.doi.org/10.1109/CEC.2008.4631314
http://dx.doi.org/10.1109/TFUZZ.2008.924203
http://dx.doi.org/10.1109/TFUZZ.2008.924203
http://www.cs.virginia.edu/johntran/cagpu/
http://www.cs.virginia.edu/johntran/cagpu/

Graphics Processing Units and Genetic Programming: An overview 1667

24. Gobron, S., Devillard, F., and Heit, B. (2007) Retina sim-
ulation using cellular automata and GPU programming.
Machine Vision and Applications, 18, 331–342.

25. Mussi, L., Cagnoni, S., and Daolio, F. (2009) GPU-based
road sign detection using particle swarm optimization.
Ninth International Conference on Intelligent Systems
Design and Applications, ISDA 2009, Pisa, Italy, Novem-
ber 30-December 2, pp. 152–157. IEEE Computer Soci-
ety.

26. Bai, Hongtao, OuYang, Dantong, Li, Ximing, He, Lili,
and Yu, Haihong (2009) MAX-MIN ant system on GPU
with CUDA. Fourth International Conference on Inno-
vative Computing, Information and Control (ICICIC),
2009, Kaohsiung, Taiwan, 7-9 Dec., pp. 801–804. IEEE.

27. Sinnott-Armstrong, N. A., Greene, C. S., and Moore,
J. H. (2010) Fast genome-wide epistasis analysis using
ant colony optimization for multifactor dimensionality
reduction analysis on graphics processing units. In Pe-
likan, M. and Branke, J. (eds.), Genetic and Evolution-
ary Computation Conference, GECCO 2010, Portland,
Oregon, USA, July 7-11, pp. 215–216. ACM.

28. Wong, Man-Leung, Wong, Tien-Tsin, and Fok, Ka-Ling
(2005) Parallel evolutionary algorithms on graphics pro-
cessing unit. In Corne, D., Michalewicz, Z., McKay, B.,
Eiben, G., Fogel, D., Fonseca, C., Greenwood, G., Raidl,
G., Tan, K. C., and Zalzala, A. (eds.), Proceedings of
the 2005 IEEE Congress on Evolutionary Computation,
Edinburgh, 2-5 September, pp. 2286–2293.

29. Fok, Ka-Ling, Wong, Tien-Tsin, and Wong, Man-Leung
(2007) Evolutionary computing on consumer graphics
hardware. IEEE Intelligent Systems, 22, 69–78.

30. Arora, R., Tulshyan, R., and Deb, K. (2010) Paralleliza-
tion of binary and real-coded genetic algorithms on GPU
using CUDA. In Sobrevilla, P. (ed.), 2010 IEEE World
Congress on Computational Intelligence, Barcelona, 18-
23 July, pp. 3680–3687.

31. Kannan, S. and Ganji, R. (2010) Porting Autodock
to CUDA. In Sobrevilla, P. (ed.), 2010 IEEE World
Congress on Computational Intelligence, Barcelona, 18-
23 July, pp. 3815–3822.

32. Tsutsui, S. and Fujimoto, N. (2010) An analytical study
of GPU computation for solving QAPs by parallel evo-
lutionary computation with independent run. In Sobre-
villa, P. (ed.), 2010 IEEE World Congress on Computa-
tional Intelligence, Barcelona, 18-23 July, pp. 889–889.

33. Wong, Man Leung and Cui, Geng (2010) Data mining
using parallel multi-objective evolutionary algorithms
on graphics hardware. In Sobrevilla, P. (ed.), 2010
IEEE World Congress on Computational Intelligence,
Barcelona, 18-23 July, pp. 3815–3822.

34. Soca, N., Blengio, J. L., Pedemonte, M., and Ezzatti,
P. (2010) PUGACE, a cellular evolutionary algorithm
framework on GPUs. In Sobrevilla, P. (ed.), 2010
IEEE World Congress on Computational Intelligence,
Barcelona, 18-23 July, pp. 3891–3898.

35. de P. Veronese, L. and Krohling, R. A. (2010) Differ-
ential Evolution algorithm on the GPU with C-CUDA.
In Sobrevilla, P. (ed.), 2010 IEEE World Congress on
Computational Intelligence, Barcelona, 18-23 July, pp.
1878–1884.

36. Munawar, A., Wahib, M., Munawar, A., and Wahib,
M. (2009) Theoretical and empirical analysis of a GPU

based parallel Bayesian Optimization Algorithm. Inter-
national Conference on Parallel and Distributed Com-
puting, Applications and Technologies, 2009, Higashi, Hi-
roshima, 8-11 Dec, pp. 457–462. IEEE.

37. Franco, M. A., Krasnogor, N., and Bacardit, J. (2010)
Speeding up the evaluation of evolutionary learning sys-
tems using GPGPUs. In Pelikan, M. and Branke, J.
(eds.), Genetic and Evolutionary Computation Confer-
ence, GECCO 2010, Portland, Oregon, USA, July 7-11,
pp. 1039–1046. ACM.

38. Luong, The Van, Melab, N., and Talbi, E.-G. (2010) Par-
allel hybrid evolutionary algorithms on GPU. In Sobre-
villa, P. (ed.), 2010 IEEE World Congress on Computa-
tional Intelligence, Barcelona, 18-23 July, pp. 2734–2741.

39. Clayton, T. F., Patel, L. N., Leng, Gareth, Murray, A. F.,
and Lindsay, I. A. (2008) Rapid evaluation and evolution
of neural models using graphics card hardware. In Kei-
jzer, M., Antoniol, G., Congdon, C. B., Deb, K., Doerr,
B., Hansen, N., Holmes, J. H., Hornby, G. S., Howard,
D., Kennedy, J., Kumar, S., Lobo, F. G., Miller, J. F.,
Moore, J., Neumann, F., Pelikan, M., Pollack, J., Sastry,
K., Stanley, K., Stoica, A., Talbi, E.-G., and Wegener,
I. (eds.), GECCO ’08: Proceedings of the 10th annual
conference on Genetic and evolutionary computation, At-
lanta, GA, USA, 12-16 July, pp. 299–306. ACM.

40. Chwatal, A. M., Raidl, G. R., and Zöch, M. (2010) Fit-
ting multi-planet transit models to photometric time-
data series by evolution strategies. In Pelikan, M. and
Branke, J. (eds.), Genetic and Evolutionary Computa-
tion Conference, GECCO 2010, Portland, Oregon, USA,
July 7-11, pp. 377–384. ACM.

41. Poli, R., Langdon, W. B., and McPhee, N. F.
(2008) A field guide to genetic programming. Pub-
lished via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk. (With contribu-
tions by J. R. Koza).

42. Lindblad, F., Nordin, P., and Wolff, K. (2002) Evolv-
ing 3D model interpretation of images using graphics
hardware. In Fogel, D. B., El-Sharkawi, M. A., Yao, X.,
Greenwood, G., Iba, H., Marrow, P., and Shackleton, M.
(eds.), Proceedings of the 2002 Congress on Evolutionary
Computation CEC2002, 12-17 May, pp. 225–230. IEEE
Press.

43. Meyer-Spradow, J. and Loviscach, J. (2003) Evolution-
ary design of BRDFs. In Chover, M., Hagen, H., and
Tost, D. (eds.), Eurographics 2003 Short Paper Proceed-
ings, pp. 301–306.

44. Ebner, M., Reinhardt, M., and Albert, J. (2005) Evolu-
tion of vertex and pixel shaders. In Keijzer, M., Tetta-
manzi, A., Collet, P., van Hemert, J. I., and Tomassini,
M. (eds.), Proceedings of the 8th European Conference on
Genetic Programming, Lausanne, Switzerland, 30 March
- 1 April, Lecture Notes in Computer Science, 3447, pp.
261–270. Springer.

45. Harding, S. and Banzhaf, W. (2007) Fast genetic pro-
gramming on GPUs. In Ebner, M., O’Neill, M., Ekárt,
A., Vanneschi, L., and Esparcia-Alcázar, A. I. (eds.),
Proceedings of the 10th European Conference on Ge-
netic Programming, Valencia, Spain, 11-13 April, Lecture
Notes in Computer Science, 4445, pp. 90–101. Springer.

46. Chitty, D. M. (2007) A data parallel approach to ge-
netic programming using programmable graphics hard-
ware. In Thierens, D., Beyer, H.-G., Bongard, J., Branke,

http://dx.doi.org/10.1007/s00138-006-0065-8
http://dx.doi.org/10.1007/s00138-006-0065-8
http://dx.doi.org/10.1109/ISDA.2009.88
http://dx.doi.org/10.1109/ISDA.2009.88
http://dx.doi.org/10.1145/1830483.1830523
http://dx.doi.org/10.1145/1830483.1830523
http://dx.doi.org/10.1145/1830483.1830523
http://dx.doi.org/10.1145/1830483.1830672
http://dx.doi.org/10.1145/1830483.1830672
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2008/docs/p299.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2008/docs/p299.pdf
http://dx.doi.org/10.1145/1830483.1830555
http://dx.doi.org/10.1145/1830483.1830555
http://dx.doi.org/10.1145/1830483.1830555
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/lindblad_2002_emioiugh.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/lindblad_2002_emioiugh.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/lindblad_2002_emioiugh.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ML03.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ML03.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/eurogp_EbnerRA05.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/eurogp_EbnerRA05.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/eurogp07_harding.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/eurogp07_harding.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/1277274.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/1277274.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/1277274.html

1668 W. B. Langdon

J., Clark, J. A., Cliff, D., Congdon, C. B., Deb, K., Do-
err, B., Kovacs, T., Kumar, S., Miller, J. F., Moore, J.,
Neumann, F., Pelikan, M., Poli, R., Sastry, K., Stanley,
K. O., Stutzle, T., Watson, R. A., and Wegener, I. (eds.),
GECCO ’07: Proceedings of the 9th annual conference
on Genetic and evolutionary computation, London, 7-11
July, pp. 1566–1573. ACM Press.

47. Flynn, M. J. (1972) Some computer organizations and
their effectiveness. IEEE Transactions on Computers,
C-21, 948–960.

48. Langdon, W. B. (2009) A CUDA SIMT interpreter for
genetic programming. Technical Report TR-09-05. De-
partment of Computer Science, King’s College London,
Strand, WC2R 2LS, UK. 18 June 2009.

49. Langdon, W. B. and Banzhaf, W. (2008) A SIMD in-
terpreter for genetic programming on GPU graphics
cards. In O’Neill, M., Vanneschi, L., Gustafson, S., Es-
parcia Alcazar, A. I., De Falco, I., Della Cioppa, A.,
and Tarantino, E. (eds.), Proceedings of the 11th Eu-
ropean Conference on Genetic Programming, EuroGP
2008, Naples, 26-28 March, Lecture Notes in Computer
Science, 4971, pp. 73–85. Springer.

50. Juille, H. and Pollack, J. B. (1996) Massively parallel
genetic programming. In Angeline, P. J. and Kinnear,
Jr., K. E. (eds.), Advances in Genetic Programming 2,
chapter 17, pp. 339–358. MIT Press.

51. Harris, Christopher. (1997) An investigation into the Ap-
plication of Genetic Programming techniques to Signal
Analysis and Feature Detection. PhD thesis University
College, London.

52. Harding, S. L. and Banzhaf, W. (2009) Distributed ge-
netic programming on GPUs using CUDA. In Hidalgo,
I., Fernandez, F., and Lanchares, J. (eds.), Workshop
on Parallel Architectures and Bioinspired Algorithms,
Raleigh, USA, September 13.

53. Langdon, W. B. (2010) Large scale bioinformatics data
mining with parallel genetic programming on graphics
processing units. In Fernandez de Vega, F. and Cantu-
Paz, E. (eds.), Parallel and Distributed Computational
Intelligence, chapter 5, January, Studies in Computa-
tional Intelligence, 279, pp. 113–141. Springer.

54. Langdon, W. B. (2010) A many threaded CUDA inter-
preter for genetic programming. In Esparcia-Alcazar,
A. I., Ekart, A., Silva, S., Dignum, S., and Uyar, A. S.
(eds.), Proceedings of the 13th European Conference on
Genetic Programming, EuroGP 2010, Istanbul, 7-9 April,
LNCS, 6021, pp. 146–158. Springer.

55. Poli, R. and Langdon, W. B. (1999) Sub-machine-code
genetic programming. In Spector, L., Langdon, W. B.,
O’Reilly, U.-M., and Angeline, P. J. (eds.), Advances in
Genetic Programming 3, chapter 13, pp. 301–323. MIT
Press.

56. Langdon, W. B. and Harrison, A. P. (2008) GP on SPMD
parallel graphics hardware for mega bioinformatics data
mining. Soft Computing, 12, 1169–1183. Special Issue
on Distributed Bioinspired Algorithms.

57. Robilliard, D., Marion-Poty, V., and Fonlupt, C. (2008)
Population parallel GP on the G80 GPU. In O’Neill,
M., Vanneschi, L., Gustafson, S., Esparcia Alcazar, A. I.,
De Falco, I., Della Cioppa, A., and Tarantino, E. (eds.),
Proceedings of the 11th European Conference on Ge-
netic Programming, EuroGP 2008, Naples, 26-28 March,

Lecture Notes in Computer Science, 4971, pp. 98–109.
Springer.

58. Robilliard, D., Marion, V., and Fonlupt, C. (2009) High
performance genetic programming on GPU. In Folino,
G., Krasnogor, N., Mastroianni, C., and Zambonelli,
F. (eds.), Proceedings of the 2009 workshop on Bio-
inspired algorithms for distributed systems, Barcelona,
Spain, June 15-19, pp. 85–94. ACM. paper invited for
the FGCS special issue.

59. Robilliard, D., Marion-Poty, V., and Fonlupt, C. (2009)
Genetic programming on graphics processing units. Ge-
netic Programming and Evolvable Machines, 10, 447–
471. Special issue on parallel and distributed evolution-
ary algorithms, part I.

60. Maitre, O., Baumes, L. A., Lachiche, N., Corma, A.,
and Collet, P. (2009) Coarse grain parallelization of evo-
lutionary algorithms on GPGPU cards with EASEA.
In Raidl, G., Rothlauf, F., Squillero, G., Drechsler, R.,
Stuetzle, T., Birattari, M., Congdon, C. B., Middendorf,
M., Blum, C., Cotta, C., Bosman, P., Grahl, J., Knowles,
J., Corne, D., Beyer, H.-G., Stanley, K., Miller, J. F.,
van Hemert, J., Lenaerts, T., Ebner, M., Bacardit, J.,
O’Neill, M., Di Penta, M., Doerr, B., Jansen, T., Poli, R.,
and Alba, E. (eds.), GECCO ’09: Proceedings of the 11th
Annual conference on Genetic and evolutionary compu-
tation, Montreal, Québec, Canada, 8-12 July, pp. 1403–
1410. ACM.

61. Maitre, O., Querry, S., Lachiche, N., and Collet, P. (2010)
EASEA parallelization of tree-based genetic program-
ming. In Sobrevilla, P. (ed.), 2010 IEEE World Congress
on Computational Intelligence, Barcelona, 18-23 July,
pp. 1997–2004. IEEE.

62. Liu, Weiguo, Schmidt, B., Voss, G., Schroder, A., and
Muller-Wittig, W. (2006) Bio-sequence database scan-
ning on a GPU. 20th International Parallel and Dis-
tributed Processing Symposium, IPDPS 2006, Rhodes,
Greece, 25-29 April. IEEE Press.

63. Manavski, S. and Valle, G. (2008) CUDA compatible
GPU cards as efficient hardware accelerators for Smith-
Waterman sequence alignment. BMC Bioinformatics, 9,
S10.

64. Wirawan, Adrianto, Kwoh, Chee, Hieu, Nim, and
Schmidt, Bertil (2008) CBESW: sequence alignment on
the playstation 3. BMC Bioinformatics, 9, 377.

65. Sinnott-Armstrong, N. A., Greene, C. S., Cancare, F.,
and Moore, J. H. (2009) Accelerating epistasis analysis in
human genetics with consumer graphics hardware. BMC
Research Notes, 2, 147.

66. Langdon, W. B. (2008) Evolving GeneChip correlation
predictors on parallel graphics hardware. In Wang, J.
(ed.), 2008 IEEE World Congress on Computational In-
telligence, Hong Kong, 1-6 June, pp. 4152–4157.

67. Langdon, W. B. and Harrison, A. P. (2009) Evolving
DNA motifs to predict GeneChip probe performance. Al-
gorithms in Molecular Biology, 4.

68. Huang, Chao-Hui, Racoceanu, D., Roux, L., and Putt,
T. C. (2010) Bio-inspired computer visual system using
GPU and visual pattern assessment language (ViPAL):
application on breast cancer prognosis. In Sobrevilla,
P. (ed.), 2010 IEEE World Congress on Computational
Intelligence, Barcelona, 18-23 July, pp. 1103–1110.

69. Rieffel, J., Saunders, F., Nadimpalli, S., Zhou, Harvey,
Hassoun, S., Rife, J., and Trimmer, B. (2009) Evolving

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2009_TR-09-05.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2009_TR-09-05.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2008_eurogp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2008_eurogp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2008_eurogp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/pollack_1996_aigp2.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/pollack_1996_aigp2.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/harris_thesis.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/harris_thesis.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/harris_thesis.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/hardinggpem2009.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/hardinggpem2009.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2009_pdci.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2009_pdci.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2009_pdci.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_eurogp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_eurogp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli_1999_aigp3.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli_1999_aigp3.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2008_SC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2008_SC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2008_SC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/conf_eurogp_RobilliardMF08.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/robilliard_high_2009.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/robilliard_high_2009.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Robilliard_2009_GPEM.html
http://dx.doi.org/10.1145/1569901.1570089
http://dx.doi.org/10.1145/1569901.1570089
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Maitre_2010_cec.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Maitre_2010_cec.html
http://dx.doi.org/10.1109/IPDPS.2006.1639531
http://dx.doi.org/10.1109/IPDPS.2006.1639531
http://dx.doi.org/10.1186/1756-0500-2-149
http://dx.doi.org/10.1186/1756-0500-2-149
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2008_CIGPU2.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2008_CIGPU2.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2009_AMB.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2009_AMB.html
http://dx.doi.org/doi:10.1145/1570256.1570351

Graphics Processing Units and Genetic Programming: An overview 1669

soft robotic locomotion in PhysX. GECCO ’09: Pro-
ceedings of the 11th annual conference companion on
Genetic and evolutionary computation conference, Mon-
treal, Québec, Canada, 8-12 July, pp. 2499–2504. ACM.

70. Lewis, T. E. and Magoulas, G. D. (2009) Strategies to
minimise the total run time of cyclic graph based genetic
programming with GPUs. In Raidl, G., Rothlauf, F.,
Squillero, G., Drechsler, R., Stuetzle, T., Birattari, M.,
Congdon, C. B., Middendorf, M., Blum, C., Cotta, C.,
Bosman, P., Grahl, J., Knowles, J., Corne, D., Beyer, H.-
G., Stanley, K., Miller, J. F., van Hemert, J., Lenaerts,
T., Ebner, M., Bacardit, J., O’Neill, M., Di Penta, M.,
Doerr, B., Jansen, T., Poli, R., and Alba, E. (eds.),
GECCO ’09: Proceedings of the 11th Annual conference
on Genetic and evolutionary computation, Montreal, 8-
12 July, pp. 1379–1386. ACM.

71. Keith, M. J. and Martin, M. C. (1994) Genetic program-
ming in C++: Implementation issues. In Kinnear, Jr.,
K. E. (ed.), Advances in Genetic Programming, chapter
13. pp. 285–310. MIT Press.

72. Langdon, W. B. and Harman, M. (2010) Evolving a
CUDA kernel from an nVidia template. In Sobrevilla,
P. (ed.), 2010 IEEE World Congress on Computational
Intelligence, Barcelona, 18-23 July, pp. 2376–2383.

73. Baskaran, M. M., Ramanujam, J., and Sadayappan, P.
(2010) Automatic C-to-CUDA code generation for affine
programs. In Gupta, R. (ed.), 9th International Confer-
ence Compiler Construction, CC 2010, Paphos, Cyprus,
March 20-28, Lecture Notes in Computer Science, 6011,
pp. 244–263. Springer. Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software,
ETAPS 2010.

74. Comte, P. (2009) Design & implementation of parallel
linear GP for the IBM cell processor. In Raidl, G., Roth-
lauf, F., Squillero, G., Drechsler, R., Stuetzle, T., Bi-
rattari, M., Congdon, C. B., Middendorf, M., Blum, C.,
Cotta, C., Bosman, P., Grahl, J., Knowles, J., Corne,
D., Beyer, H.-G., Stanley, K., Miller, J. F., van Hemert,
J., Lenaerts, T., Ebner, M., Bacardit, J., O’Neill, M., Di
Penta, M., Doerr, B., Jansen, T., Poli, R., and Alba, E.
(eds.), GECCO ’09: Proceedings of the 11th Annual con-
ference on Genetic and evolutionary computation, Mon-
treal, 8-12 July. ACM.

75. Wilson, G. and Banzhaf, W. (2010) Deployment of par-
allel linear genetic programming using GPUs on PC and
video game console platforms. Genetic Programming and
Evolvable Machines, 11, 147–184.

76. Openshaw, S. and Turton, I. (1994) Building new spatial
interaction models using genetic programming. In Fog-
arty, T. C. (ed.), Evolutionary Computing, AISB work-
shop, Leeds, UK, 11-13 April (unpublished).

77. Chong, Fuey Sian and Langdon, W. B. (1999) Java based
distributed genetic programming on the internet. In
Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H.,
Honavar, V., Jakiela, M., and Smith, R. E. (eds.), Pro-
ceedings of the Genetic and Evolutionary Computation
Conference, Orlando, Florida, USA, 13-17 July 1229.
Morgan Kaufmann. Full text in technical report CSRP-
99-7.

78. Klein, J. and Spector, L. (2007) Unwitting distributed
genetic programming via asynchronous JavaScript and
XML. In Thierens, D., Beyer, H.-G., Bongard, J.,

Branke, J., Clark, J. A., Cliff, D., Congdon, C. B., Deb,
K., Doerr, B., Kovacs, T., Kumar, S., Miller, J. F.,
Moore, J., Neumann, F., Pelikan, M., Poli, R., Sastry, K.,
Stanley, K. O., Stutzle, T., Watson, R. A., and Wegener,
I. (eds.), GECCO ’07: Proceedings of the 9th annual con-
ference on Genetic and evolutionary computation, Lon-
don, 7-11 July, pp. 1628–1635. ACM Press.

79. Cole, N., Desell, T., Lombrana Gonzalez, D., Fernandez
de Vega, F., Magdon-Ismail, M., Newberg, H., Szyman-
ski, B., and Varela, C. (2010) Evolutionary algorithms
on volunteer computing platforms: The milkyway@home
project. In Fernandez de Vega, F. and Cantu-Paz, E.
(eds.), Parallel and Distributed Computational Intelli-
gence, chapter 4, pp. 63–90. Springer.

80. Desell, T., Anderson, D. P., Magdon-Ismail, M., New-
berg, H., Szymanski, B., and Varela, C. A. (2010)
An analysis of massively distributed evolutionary al-
gorithms. In Sobrevilla, P. (ed.), 2010 IEEE World
Congress on Computational Intelligence, Barcelona, 18-
23 July, pp. 873–880.

http://dx.doi.org/doi:10.1145/1570256.1570351
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/kinnear_keith.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/kinnear_keith.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html
http://dx.doi.org/10.1007/978-3-642-11970-5_14
http://dx.doi.org/10.1007/978-3-642-11970-5_14
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/openshaw_1994_bnsim.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/openshaw_1994_bnsim.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/chong_1999_jDGPi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/chong_1999_jDGPi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/1277282.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/1277282.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/1277282.html
http://dx.doi.org/10.1007/978-3-642-10675-0_4
http://dx.doi.org/10.1007/978-3-642-10675-0_4
http://dx.doi.org/10.1007/978-3-642-10675-0_4

	Introduction
	Computational Intelligence on GPU
	Genetic Programming on GPU
	Discussion
	Conclusions

