
Evo_Indent Interactive Evolution of GNU indent Options

W. B. Langdon

Department of Computer Science, CREST centre, King’s College, London, WC2R 2LS, UK

ABSTRACT
Evo Indent http://www.dcs.kcl.ac.uk/staff/W.Langdon/
evo_indent/ is a PHP web server based user driven genetic
algorithm which finds good C code layouts generated by
GNU indent. Either the refactored source can be used or
the user’s preferred indent command options can be saved
and re-used to pretty print other program text files.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments—
Interactive environments

General Terms
Human Factors

Keywords
Evolutionary Algorithms, (1+3)-ES, mutation, chromosome
reordering, user driven fitness, personalised software, cus-
tomised interface, prettyprint, understandability, compre-
hension, refactoring, SBSE

1. INTRODUCTION
Typically low level machine code, assembly languages and

older high level languages, such as Fortran, have fixed lay-
out rules. In contrast, most modern programming languages
(C, C++, PHP, Java, etc.) are layout independent. How-
ever good source code layout, particularly indentation, aids
comprehension. Therefore there are many recommendations
for good program layout. Indeed some commercial compa-
nies include program source layout as part of their inhouse
mandatory styles. However many C programmers are free
to choose their own programming style. Indeed tools like
emacs can be customised to suit each individual.

The GNU indent program has detailed knowledge of C. It
uses this to layout users’ source files. In particular it uses in-
dentation to highlight the block structure of the code. indent
is freely available and ported to many platforms and operat-
ing systems. In particular, it runs both on SUN webservers
and PCs. To accommodate user preferences, it supports 60
options, many of which require a parameter value.

Although indent provides sensible defaults for its options,
deciding on the best combination for a particular purpose
is difficult. In practice, most users will either accept one

Copyright is held by the author/owner(s).
GECCO’09, Late Breaking paper July 8–12, 2009, Montreal, Canada
ACM 978-1-60558-505-5/09/07.

of the default setting or resort to trying out an individual
indent option on the source file and seeing what effect it
has. Although indent makes backup copies of the files it
changes, experimenting with command lines is both tedious
and error prone. However should the user alight on a nice
set of options, these can be saved in an .indent.pro file,
thus enabling their convenient reuse on other C source files.

Evo Indent automates this experimentation, in a safe, prin-
cipled, rapid and user friendly manner. (Cf. Fig 1.) It ap-
pears to be the first application of interactive evolution to
software refactoring.

The next section describes how Evo Indent works, whilst
Section 3 describes its benefits. Technical details of the ar-
tificial evolutionary system including genetic representation
and mutation are delayed until Section 4. Section 5 consid-
ers the implication of our choice of a web based design and
considers local alternatives. We conclude in Section 6.

Figure 1: Evo Indent main operational screen.
Three new mutants and their parent are displayed
and the user is invited to choose their preferred lay-
out. Phenotypic differences between parent and off-
spring are highlighted in red. The indent command
line is displayed at the top of each scrollable frame.
The frames are automatically scrolled to the first
difference.

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://crest.dcs.kcl.ac.uk/
http://www.dcs.kcl.ac.uk/staff/W.Langdon/evo_indent/
http://www.dcs.kcl.ac.uk/staff/W.Langdon/evo_indent/
http://www.dcs.kcl.ac.uk/staff/W.Langdon/evo_indent/
http://www.gnu.org/software/indent/


2. INTERACTIVELY EVOLVING USER
PREFERRED GNU INDENT OPTIONS

Evo Indent consists mainly of two screens. The first is a
form written in traditional HTML which allows the user to
upload their C source or library (.h) file.

The second screen uses PHP to generate HTML dynam-
ically, cf. Fig 1. This is where the evolution takes place.
HTML frames are supported by most browsers and these
are used to partition the browser window into four main ar-
eas. These four are used as scrollable windows onto the four
current evolved layouts of the user’s file. A small fifth frame
at the bottom is used to display a little status information.

2.1 Starting Evolution with a Random
Population

After the user’s file is uploaded a population of four ran-
dom indent command lines is created. Each is assigned to
one of the four main frames. For each, indent is run with
the random command line and its processed output is sent
to the frame.

indent’s output and the original file are compared and
differences highlighted in red. This makes changes intro-
duced by indent more visible and so reduces user fatigue,
cf. Section 3.4. The source code is also scanned for charac-
ters which the browser might interpret as HTML commands
and these are replaced by HTML escape codes.

The whole source code is wrapped in an HTML hyper-
link. This is displayed by the browser in its usual way and
so is immediately recognisable as a hyper link to the user.
When the user activates the link on one of the four frames,
the browser signals this to the webserver, which directs the
signal to Evo Indent’s PHP script.

2.2 Creating a New Generation
When the user’s signal arrives, the chosen member of the

population is redisplayed in the same frame without its ear-
lier red highlighting. Its chromosome is mutated three times
to create three children. These are displayed in the other
three screens. In the new population, red is used to high-
light differences from the parent.

2.3 Ending the (1+3)-ES
Evolution continues for as long as the user wishes. At any

point the user may stop and, using their browser, either save
the current command line or indent’s output or both.

It is even possible, using the browser’s back button, to
recover a previous population and proceed with a new evo-
lutionary path. (See also Section 3.4.)

3. ADVANTAGES OF EVO_INDENT

3.1 Safety
A copy of the user’s file is uploaded to our web server.

All experimental operations take place in the controlled web
server environment. Only when a satisfactory layout has
been achieved need the user transfer the new version back
to their PC. The user may also save the evolved indent com-
mand options to their own .indent.pro file. .indent.pro

makes it easy to run indent on the PC with the user’s in-
dividual evolved preferences. Also .indent.pro files can be
shared, enabling customised styles to be shared by a group
of C programmers.

3.2 Convenience
The web environment uses an evolutionary algorithm to

generate new indent options in a principled way. The user
is presented not with the command options but with their
effect on the user’s file. Changes in layout are highlighted.

Evo Indent allows the user to choose between up to four
options simultaneously. Only a single mouse click is need to
choose an option.

All the management of intermediate files and finding dif-
ferences between options is done automatically on the server
without the user being concerned.

3.3 Speed
Operation via a remote server might be expected to im-

pose delays. However with high speed PCs, modern browsers
and typical high speed network connection, in practice the
time to up load files and transfer screens of information to
the user’s browser are barely noticeable.

3.4 Reduced User Fatigue
A common problem with interactive evolution is user fa-

tigue. That is, typically the user of the system quickly loses
interest in the system.

By allowing the user to upload their own files and control
how they are laid out we have given them a stake in the
system. After all it is their code that is being re-factored for
their benefit.

The user indicates their choice by simply clicking on it.
This is done in exactly the same way that the user clicks on
links. Thus they will be entirely familiar with the mecha-
nism that their browser provides. Almost any point in the
whole screen can be clicked on. No time need be wasted
accurately positioning the mouse.

Whilst obviously dependent on communications and server
loading, typically all four new frames are presented to the
user in less than a second of their mouse click.

Most of the time is spent by the user deciding which of
the options to choose. We position each new layout at the
start of changes from the previous generation. Nevertheless,
typically users will want to scroll through the changes before
deciding. This is the most time consuming part.

The evolution can be stopped at any point and its results
harvested by the user.

If the user changes their mind, their browser’s forward
and back buttons allow them to step backwards and for-
wards through the evolution. However only one active path
through the evolution is supported. If the user makes a new
choice a new set of random mutations are created. Whilst
back tracking to earlier populations is still possible, the pre-
vious forward steps become inaccessible.

4. MUTATING INDENT’S COMMAND LINE

4.1 indent’s Command Options
Excluding help, version identification and C types, from

the user’s point of view indent has 60 command line options.
There are four settings options: gnu (default) linux,

kernighan-and-ritchie-style and berkeley-style which
provide suitable defaults and thus effect multiple other op-
tions. There is also one settings option which disables an
integer option. These five options can either be asserted or
not present.

http://www.dcs.kcl.ac.uk/staff/W.Langdon/evo_indent/


There are eighteen command options which have integer
values. Again they can only be in use or not. (If not their
default value is used).

The remaining command options are Boolean and can be
either explicitly set, explicitly turned off or omitted. Again
if they are not present, their default value is in use.

indent processes its command line in order. Thus, partic-
ularly for the five settings options, where an option appears
in the command line is important. However there is no need
for an option to appear more than once, since then it is sure
to nullify the effect of its previous occurrence.

4.2 Evo_Indent’s Chromosome
The chromosome consists of an ordered list of genes. There

is exactly one gene for each of the 60 indent command op-
tions. For a settings option, the gene says if it is on (+) or
not present. For a Boolean, the gene says if it is on (+),
negated (-) or neither. For an integer, the gene holds its
value and also says if it is on (+) or the default value is to
be used. Note an integer gene continues to hold the option’s
value even if the option is not asserted (and therefore indent
is using its default value).

4.3 Creating a Random Population
The initial four chromosomes are created at random. How-

ever since the user’s time is so precious they are checked to
try and ensure that they represent different command op-
tions. In practice detailed knowledge of the operation of
indent would have to be used to make this totally water
tight. It is usually sufficient to check only that the active
options are different. (A possible future enhancement would
be to check that the output generated by indent, i.e. the four
phenotypes, are different.)

4.4 Creating a Random Chromosome
The five settings genes which control other genes (cf. Sec-

tion 4.1 are placed in a random order then added to the start
of the chromosome. For each there is a 10% chance that it
will be asserted (+). (Thus there is 41% chance that none
of the five will be used.)

Similarly the other 55 genes are placed in random order
and for each there is a 10% chance that it will be asserted and
a 90% chance it will take its default value. Active Booleans
are equally likely to be on (+) as off (-). The value of active
integers is given by mutating their default value.

4.5 Mutating Integer Values
If the current value (i) is less than ten a new value is

chosen equally from i− 2, i− 1, i + 1, i + 2.
If i greater than 10, a new integer is chosen from the

ranges i× 0.833333 . . . i× 0.990099 or i× 1.01 . . . i× 1.20.

4.6 Mutating Chromosomes
As with the initial population (Section 4.3) we try to en-

sure each new child command line is different from its parent.
To mutate a chromosome we start by randomly re-ordering

it. One might suggest mutations should be small changes
and choosing a random permutation uniformly is not a small
change. However typically command options do not interfere
with each other so many gene swaps have no effect. Thus
a total random reordering has less effect than might at first
be expected.

The new chromosome is processed in its new order. For
each gene there is 10% chance of it being mutated.

If an integer is currently asserted it can either (with equal
likelihood) be disabled or its value can be mutated (using
the algorithm described in Section 4.5). If the integer option
is not asserted, then it will be. Also, with equal likelihood:
1) it will retain its current value. 2) its current value will be
mutated (cf. Section 4.5). Or 3) its value will be replaced
by mutating its default value. (I.e. a new value will be gen-
erated in the same way as was used to create the initial
population.)

If a Boolean is asserted (+) it has a 50% chance of be-
coming negated (-) and a 50% chance of being removed and
thus reverting to its default value. Similarly negated (-) and
unasserted Booleans have equal chances of being changed to
one of their two other possibilities.

If a settings gene is chosen for mutation, if it is active
it will be disabled. Conversely if it not present it will be
enabled. Note these are potentially large changes.

Since the initial generation starts with few genes asserted,
over the generations the number of asserted options tends
to increase.

4.7 Displaying the Command Line
Chromosomes are always converted to command lines one

gene at a time in the same order as they occur in the chro-
mosome.

Almost all of indent’s command line options have both a
short name and at least one long form. The short names
consist of two or three letters and so are rather cryptic.
Therefore when displaying an Evo Indent chromosome the
longer indent name is used.

5. DISCUSSION
The current system has the advantages of being fast and

operational on common web browsers. However this means
it does not support fisheye views to enable the user to rapidly
concentrate upon particular parts of their programs or spe-
cialised printing options like kerning. These would require
specialised browser support and tend to be computationally
demanding.

While interactive operations should in principle be han-
dled on the user’s PC rather than on a web server, the heavy
use of files and system utilities make it very difficult to imple-
ment in the user’s browser and very difficult to obtain porta-
bility between browsers. Nevertheless good performance can
be obtained despite the inevitable network overhead.

Unlike, emacs, indent is command line based and designed
to reformat files in a single operation. This makes its opera-
tion under PHP on a web server viable. It would be nice to
target either emacs or eclipse but successful interactive evo-
lution would probably be difficult requiring tight integration
between them and the evolutionary environment and so be
infeasible in a web server environment.

6. CONCLUSIONS
Evo Indent http://www.dcs.kcl.ac.uk/staff/W.Langdon/

evo_indent/ allows the user to navigate the huge space
(� 260) of GNU indent command line options in a con-
trolled, rapid and user friendly fashion.

Acknowledgment
I would like to thank Youssef Hassoun and Jian Ren.

http://www.dcs.kcl.ac.uk/staff/W.Langdon/evo_indent/
http://www.dcs.kcl.ac.uk/staff/W.Langdon/evo_indent/
http://www.dcs.kcl.ac.uk/staff/W.Langdon/evo_indent/

	Introduction
	Interactively Evolving User Preferred GNU indent Options
	Starting Evolution with a Random Population
	Creating a New Generation
	Ending the (1+3)-ES

	Advantages of Evo_Indent
	Safety
	Convenience
	Speed
	Reduced User Fatigue

	Mutating indent's Command Line
	indent's Command Options
	Evo_Indent's Chromosome
	Creating a Random Population
	Creating a Random Chromosome
	Mutating Integer Values
	Mutating Chromosomes
	Displaying the Command Line

	Discussion
	Conclusions

